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Abstract

The Gaussian-3 (G3) composite approach for thermochemical properties is revisited in the light 
of enhanced computational efficiency and reduced memory costs by applying the resolution-of-
the-identity (RI) approximation for two-electron repulsion integrals (ERIs) to the 
computationally demanding component methods in the G3 model: the energy and gradient 
computations via the second-order Møller-Plesset perturbation theory (MP2) and the energy 
computations using the coupled-cluster singles-doubles method augmented with non-iterative 
triples corrections [CCSD(T)]. Efficient implementation of the RI-based methods is achieved by 
employing a hybrid distributed/shared memory model based on MPI and OpenMP. The new 
variant of the G3 composite approach based on the RI approximation is termed the RI-G3 
scheme, or alternatively the PDG method. The accuracy of the new RI-G3/PDG scheme is 
compared to the “standard” G3 composite approach that employs the memory-expensive four-
center ERIs in the MP2 and CCSD(T) calculations. Taking the computation of the heats of 
formation of the closed-shell molecules in the G3/99 test set as a test case, it is demonstrated 
that the RI approximation introduces negligible changes to the mean absolute errors relative to 
the standard G3 model (less than 0.1 kcal/mol), while the standard deviations remain 
unaltered. The efficiency and memory requirements for the RI-MP2 and RI-CCSD(T) methods 
are compared to the standard MP2 and CCSD(T) approaches, respectively. The hybrid 
MPI/OpenMP based RI-MP2 energy plus gradient computation is found to attain a 7.5x speedup 
over the standard MP2 calculations. For the most demanding CCSD(T) calculations, the 
application of the RI approximation is found to nearly halve the memory demand, confer about 
a 4-5x speedup for the CCSD iterations, and reduce the computational time for the compute-
intensive triples correction step by several hours. 
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1. Introduction 

High level ab initio electronic structure theory (e.g., coupled cluster methods with large 

basis sets) can provide accurate thermodynamic properties, which are essential in the chemical 

sciences and industry. However, due to prohibitive computational costs, their applicability, 

especially with appropriate basis sets, is usually restricted to small molecular systems. 

Fortunately, several researchers, notably Lipscomb and Schlegel noted that, if one chooses a 

reasonable starting point (e.g., Hartree-Fock with a double zeta plus polarization basis set), 

subsequent improvements in the level of theory and in the atomic basis set are nearly 

independent of each other.1,2 This recognition led to the concept of “composite methods”, with 

which one can extrapolate to a desired accurate result. For example, define a desired high level 

(HL) of theory and a desired large basis set (LB) whose combination HL/LB cannot practicably be 

applied to molecules of interest. Then, define a low level (LL) of theory and a small basis set (SB) 

whose combination is tractable. If improvement in the level of theory and the improvement in 

the basis set are independent of each other, then one could approximate a HL/LB calculation 

as:

E[HL/LB]≅E[LL/LB] + {E[HL/SB]–E[LL/SB]} (1)

The term in curly brackets in Eq. (1) is a level of theory correction obtained using the small 

basis. This correction is then added to the separate calculation using the low level of theory 

with the desired large basis. This composite approach is the principle for several methods, 

including the Gn methods of Pople and co-workers,3 the Wn methods of Martin et al.,4–6 and 

the ccCA methods of Wilson and co-workers.7–11 These various methods differ in the detailed 

definitions of HL, LL, SB, LB, but the basic idea is the same, and the predicted thermodynamic 

properties, such as heats of formation, is frequently within “chemical accuracy”, variously 

defined as 1-2 kcal/mol.  

The use of composite methods to predict energetic properties of molecules increases the 

sizes of systems that are amenable to realistic computations, but such calculations are still 
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limited by the CPU and memory demands of the chosen levels of theory and basis sets. Memory 

requirements are a particular bottleneck for most high levels of theory. One approach to 

reduce the computational effort as well as the memory footprint of correlated electronic 

structure methods is to apply the resolution of the identity (RI) approximation.12–15  In the RI 

approximation one employs an auxilary basis set to reduce time-consuming and memory-

demanding 4-index 2-electron integrals to 3-index 2-electron integrals. Recently, the authors 

have derived and implemented in GAMESS16 computationally efficient second-order 

perturbation theory (MP2) energies17 and gradients18 and coupled cluster with singles, doubles, 

and non-iterative triples [CCSD(T)] energies19 within the RI ansatz. In this work, the RI-MP2 and 

RI-CCSD(T) methods in GAMESS are used in a reformulation of the Gaussian-3 (G3) method.20–23 

The accuracy of this new RI-G3 method, also called the PDG method, is essentially the same as 

that of the original method, while the computational efficiency and memory footprint are 

greatly improved.   

The current work focuses on the modified G3 method,24 in which HL is CCSD(T), LL is MP2, 

LB is G3L20,25 and SB is 6-31G(d).26,27 The G3 method uses MP2/6-31G(d) geometries and HF/6-

31G(d) zero-point energy (ZPE) corrections and predicts heats of formation that are in 

agreement with experimental values with an average absolute error of ~1-2 kcal/mol.28  In 

more detail, in the G3 approach, the geometry of a molecular system is first optimized at the 

HF/6-31G(d) level of theory followed by Hessian calculations for the ZPE correction. The 

geometry is further refined at the MP2/6-31G(d) level of theory, which is used for spin-orbit 

and single point energy calculations at the CCSD(T)/6-31G(d) and MP2/G3L levels of theory.  

During the last decade, there have been large changes in computer hardware and 

programming models. After a period of boosting floating point operations per second (FLOPS) 

and the memory of individual processors, most computer vendors are now putting multiple 

processing units together in a shared memory pool to form a compute node, which dramatically 

increases FLOP counts while avoiding high heat due to operations of individual processors at 

high frequency. A drawback of this approach is that a computer code based on the popular 

distributed memory model will not automatically get faster after every cycle of hardware 

updates. They might even get slower due to the limitation of the memory resource per 
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compute process and/or reduction of the CPU frequency of individual processing units. 

Therefore, employing a hybrid programming model, in which shared memory for on-node 

parallelism and distributed memory for inter-node communication, is a natural approach to 

boost application performance.17,29 In combination with the reduction of the memory footprint, 

enabling node shared memory using lightweight threading processes can potentially maximize 

local computation and speed up calculations. 

Recently, the MPI/OpenMP hybrid distributed/shared memory parallel programming model 

has been applied to the RI-MP2 energy17 and gradient18 and RI-CCSD(T) energy19 and 

implemented in the GAMESS30 suite of electronic structure programs. These new algorithms 

have been demonstrated to significantly increase the performance and the applicability domain 

of these electron correlation methods. In addition, the HF energy and gradient methods in 

GAMESS have also been threaded, thereby attaining significant speedups.29,31 

In this work, the G3 method for closed-shell molecular systems is restructured to 

incorporate the RI approximation and the hybrid distributed/shared memory parallel 

programming models MPI/OpenMP. The accuracy of the resulting MPI/OpenMP RI-G3 method, 

also called the PDG (Pham-Datta-Gordon or Pretty Darn Good) method, is tested against 

experimental heats of formation of closed-shell molecules in the G3/99 test set.32 The 

computational efficiency of the PDG method is compared with the existing MPI-based G3 

method previously implemented in GAMESS.33 Although the current implementation is limited 

to closed shell molecules, the extension to open shell species is straightforward and will be 

accomplished in the future.  

2. RI approximation

In the RI approximation using a Coulomb metric,12–15 4-index 2-electron repulsion integrals 

(4-2ERIs), defined in equation (2) below

(μν│λσ) = ∬𝑑𝑟1𝑑𝑟2ϕ ∗
μ (𝑟1)ϕν(𝑟1)𝑟 ―1

12 ϕ ∗
λ (𝑟2)ϕσ(𝑟2) (2)

are approximated by the product of the 3-index matrix 𝐵
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(μν│λσ) ≈
𝐴𝑈𝑋

∑
𝑃

𝐵𝑃
μν𝐵𝑃

λσ (3)

In equation (2),  are atomic orbital (AO) basis functions. The superscript AUX in equation {ϕμ(𝑟)}

(3) is the number of auxiliary basis functions. The matrix  is formed by contracting the matrix  𝐵 Ω

with the 3-index 2-electron repulsion integrals:

𝐵𝑃
μν =

𝐴𝑈𝑋

∑
𝑅

Ω𝑃𝑅(𝑅│μν) (4)

The 3-index 2-electron repulsion integrals (3-2ERIs) are formulated from one AO and two 

auxiliary basis functions  as follows:{α𝑅(𝑟)}

(𝑅│μν) = ∬𝑑𝑟1𝑑𝑟2α𝑅(𝑟1)𝑟 ―1
12 ϕ ∗

μ (𝑟2)ϕν(𝑟2) (5)

The matrix  in equation (4) is obtained by decomposing the inverse of the matrix V (equation Ω

(6)), which is a matrix of 2-index 2-electron repulsion integrals defined in equation (7). 

𝑉 ―1 = Ω𝑇Ω (6)

𝑉𝑃𝑄 = ∬𝑑𝑟1𝑑𝑟2α𝑃(𝑟1)𝑟 ―1
12 α𝑄(𝑟2) (7)

The superscript  in equation (6) stands for the matrix transpose operation. The matrix 𝑇

decomposition can be carried out using the Cholesky34 or the eigen-decomposition method.

The RI approximation thus requires an auxiliary basis set and introduces a 3-dimensional 

array  (equations (3) and (4)). The size of array  is ~N*N*AUX, where N is the number of AOs 𝐵 𝐵

in the atomic basis set. The number of auxiliary basis functions (AUX) in optimized auxiliary 

basis sets15,35 is *N, in which  is usually ~1-10. Integral storage (if necessary) in the RI ~𝛾 𝛾

approximation is thus  with a small prefactor compared with  when regular 4-~𝑂(𝑁3) ~𝑂(𝑁4)
2ERIs are used. 
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3. MPI/OpenMP RI-G3/PDG method

The family of G3 methods have been well documented in the literature.23,36,37 In the 

GAMESS version QCISD(T) is replaced by CCSD(T), as in Ref. 24. All other components remain 

the same as in the original G3 method. In this paper, unless otherwise noted, the G3 method 

refers to the GAMESS version.

In the RI-G3 method, the MP2/6-31G(d) gradient, MP2/G3L and CCSD(T)/6-31(d) single 

point energy calculations are, respectively, substituted by the RI-MP2/6-31G(d)//AUX1 

gradient, and the RI-MP2/G3L//AUX2 and CCSD(T)/6-31G(d)//AUX3 single point energy 

calculations. AUX1, AUX2 and AUX3 are auxiliary basis sets associated with the RI 

approximation in each step of the G3 calculation. In the next section, the effect of auxiliary 

basis sets on the accuracy of RI-G3 method will be examined using closed-shell molecules in the 

G3/99 testset.

Bottlenecks in the RI-G3 method, including the HF/6-31G(d) gradient,31 RI-MP2/6-31G(d) 

gradient,18 RI-CCSD(T)/6-31G(d)19 and MP2/G3L17 single point energy calculations have been 

parallelized using the hybrid distributed/shared memory models based on MPI and OpenMP 

API. In practice, one MPI rank is created on each compute node or socket, which then spawns a 

team of threads for the actual computation. Threads are lightweight processes that can be 

created and destroyed with small overhead. Furthermore, an essential property of threads in a 

team is that they can naturallly share memory with negligible communication overhead. This 

subsequently minimizes the memory footprint compared with the distributed model that needs 

to replicate most data structures. The performance of MPI/OpenMP for the RI-MP2 energy and 

gradient and the RI-CCSD(T) energy have been implemented and demonstrated previously.17–19 

These methods are interfaced with the G3 driver for the MPI/OpenMP RI-G3 method, whose 

accuracy and performance are discussed in next sections.
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4. Results and discussion

4.1 RI-G3 accuracy 

An important aspect of the current study is to assess how the accuracy of the G3 composite 

approach is affected when using the RI approximation for 4-2ERIs. For a thorough assessment, 

three independent sets of calculations were performed, which applied the RI approximation to 

different components of the G3 method. The first variant is termed the G3(RIMP2) method, 

which substitutes the standard MP2/6-31G(d) gradient and MP2/G3L energy with the RI-

MP2/6-31G(d)//AUX1 gradient and RI-MP2/G3L//AUX2 energy, while still using standard 

CCSD(T) energies. The second variant substitutes only the standard CCSD(T)/6-31G(d) energy 

with the RI-CCSD(T)/6-31G(d)//AUX3 energy and is termed G3(RICC). The third variant 

introduces the RI approximation to both MP2 and CCSD(T) calculations and is termed the RI-G3 

method. All three methods are collectively referred to as PDG. The accuracies of the three RI-

based G3 methods were evaluated on the basis of the heats of formation of the closed-shell 

molecules in the G3/99 testset. In addition, their accuracies were also compared with the 

accuracy of the G3 method based entirely on standard 4-2ERIs, which is dubbed in the following 

the standard G3 scheme. All three methods G3(RIMP2), G3(RICC) and RI-G3 have been 

interfaced with the GAMESS G3 driver.

Figures 1a-c show the heats of formation of closed-shell molecules of the G3/99 test set 

from experiments; standard G3; G3(RIMP2) with AUX1/AUX2 = cc-pVDZ-RI/cc-pVTZ-RI; G3(RICC) 

with AUX3 = cc-pVDZ-RI; and full RI-G3 with AUX1/AUX2/AUX3 to be cc-pVDZ-RI/cc-pVTZ-RI/cc-

pVDZ-RI. Full details of the heats of formation for other auxiliary basis set combinations are 

listed in Table S1 in the Supporting Information.
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(a)

(b)

(c)

Figure 1. Heats of formation of closed-shell molecules in the G3/99 testset from experimental 
measurement, standard G3, G3(RIMP2), G3(RICC) and RI-G3 computation. The cc-pVDZ-RI and 
cc-pVTZ-RI auxiliary basis sets are used for the RI-MP2 gradients and energy, the cc-pVDZ-RI 
auxiliary basis set is used for RI-CCSD(T) energy component when the RI approximation is 
utilized in the composite methods. (a) Molecules with positive heats of formation; (b) the first 
half of molecules with negative heats of formation; (c) the second half of molecules with 
negative heats of formation.
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The error in the heat of formation (at 298K) for a molecule  in the G3/99 set obtained with 𝑖

various G3 composite approaches are defined in the following equations:

𝛿(𝑖)
𝐺3 = 𝐸(𝑖)

G3 ― 𝐸(𝑖)
𝑒𝑥𝑝𝑡 (8)

𝛿(𝑖)
𝐺3(𝑅𝐼𝑀𝑃2) = 𝐸(𝑖)

G3(RIMP2) ― 𝐸(𝑖)
𝑒𝑥𝑝𝑡 (9)

𝛿(𝑖)
𝐺3(𝑅𝐼𝐶𝐶) = 𝐸(𝑖)

G3(RICC) ― 𝐸(𝑖)
𝑒𝑥𝑝𝑡 (10)

𝛿(𝑖)
𝑅𝐼𝐺3 = 𝐸(𝑖)

RIG3 ― 𝐸(𝑖)
𝑒𝑥𝑝𝑡 (11)

In equations (8)-(11), , ,  and  denote the heats of formation of 𝐸(𝑖)
𝐺3 𝐸(𝑖)

𝐺3(RIMP2) 𝐸(𝑖)
𝐺3(RICC) 𝐸(𝑖)

𝑅𝐼𝐺3

the molecule  calculated by the standard G3, G3(RIMP2), G3(RICC) and RI-G3 methods, 𝑖

respectively.  denotes the experimental result. Statistical measures of the accuracies of the 𝐸(𝑖)
𝑒𝑥𝑝𝑡

various G3 methods are given in terms of the average absolute errors  and the standard 𝛿

deviations  against the experimental values. For the G3(RIMP2) scheme, for example, the 𝜎

average absolute error  and the standard deviation , are defined as follows𝛿𝐺3(𝑅𝐼𝑀𝑃2) 𝜎𝐺3(𝑅𝐼𝑀𝑃2)

𝛿𝐺3(𝑅𝐼𝑀𝑃2) =
1

𝑛  

𝑛

∑
𝑖

|𝛿(𝑖)
𝐺3(𝑅𝐼𝑀𝑃2)| (12)

𝜎𝐺3(𝑅𝐼𝑀𝑃2) =
∑𝑛

𝑖 (𝛿(𝑖)
𝐺3(𝑅𝐼𝑀𝑃2) ― 𝛿𝐺3(𝑅𝐼𝑀𝑃2))2

𝑛
(13)

where  is the number of closed-shell molecules in the G3/99 set. Table 1 summarizes the 𝑛

average absolute errors and standard deviations for the G3 and RI-based G3 composite schemes.

Table 1. Average absolute error  and standard deviation  of heats of formation of closed-𝛿 (𝜎)
shell molecules in the G3/99 test set calculated by standard G3, G3(RIMP2), G3(RICC) and the RI-
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10

G3 methods against experimental values. Details of calculated heats of formation are shown in 
Table S1 of the supporting information. Here, CCD, CCT, ACCT stand for the cc-pvDZ-RI, cc-pVTZ-
RI, aug-cc-pVTZ-RI auxiliary basis sets, respectively.

G3 G3(RIMP2) G3(RICC) RI-G3
AUX1 N/A CCD CCT ACCT N/A N/A N/A CCD CCT ACCT
AUX2 N/A CCT CCT ACCT N/A N/A N/A CCT CCT ACCT
AUX3 N/A N/A N/A N/A CCD CCT ACCT CCD CCT ACCT

𝜹 1.46 1.49 1.49 1.49 1.46 1.33 1.53 1.52 1.52 1.55
𝝈 1.88 1.88 1.88 1.88 1.62 1.68 1.95 1.86 1.86 1.95

In G3(RIMP2), the MP2/6-31G(d) gradients and MP2/G3L single-point energies were 

approximated by the RI-MP2/6-31G(d)//AUX1 gradients and RI-MP2/G3L//AUX2 single-point 

energies, respectively. The accuracy of the RI approximation to 4-2ERIs depends on the size and 

the quality auxiliary basis set, which in turn should be chosen in a consistent manner along with 

the atomic basis set. Two different auxliary basis sets AUX1 and AUX2 were used in order to 

attain flexibility and higher accuracy in conjuction with the 6-31G(d) and G3L atomic basis sets, 

respectively. Table 1 indicates that the average absolute error and the standard deviation 

obtained with the G3(RIMP2) scheme are independent of the choice of the auxiliary basis set, 

and the average absolute error is only slightly different from that of the standard G3 approach 

(e.g., 1.49 vs. 1.46 kcal/mol), even though the standard devition remains unaffected (1.88 

kcal/mol). 

In the G3(MP2,RICC) method, the CCSD(T)/6-31G(d) single point energies were replaced 

with the RI-CCSD(T)/6-31G(d)//AUX3 energies. The average absolute errors and the standard 

deviations of the heats of formation obtained with the G3(MP2,RICC) scheme are slightly 

smaller than those obtained with the G3(RIMP2) scheme. For example, with the smallest cc-

pVDZ-RI basis set,  and 𝛿 = 1.46 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 σ = 1.62 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙.

Table 1 indicates that the average absolute error and the standard devition obtained with 

the G3(RICC) scheme are a bit more sensitive to the choice of the auxliary basis set than the 
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G3(RIMP2) approach. In particular, both  and  become sligtly worse when AUX3 is chosen to 𝛿 σ

be aug-cc-pVTZ-RI. It should be noted that no auxiliary basis set specifically optimized for RI-CC 

calculations is available in the literature. It is a common practice to employ the auxliliary basis 

sets optimized for RI-MP2 calculations38 also in RI-CC calculations. It has been previously 

reported39 that these auxiliary basis sets provide reasonable accuracy in RI-CC calculations. 

However, the current results indicate that the RI-CCSD(T) energies are a bit more sensitive to 

the choice of the auxiliary basis set than the RI-MP2 energies. 

Finally, the accuracy of the RI-G3 scheme is examined, in which the MP2/6-31G(d) gradients 

as well as MP2/G3L and CCSD(T)/6-31G(d) single-point energies were all replaced with the RI 

approximation: RI-MP2/6-31G(d)//AUX1 gradients, RI-MP2/G3L//AUX2 and RI-CCSD(T)/6-

31G(d)//AUX3 single point energies, respectively. Table 1 indicates that the average absolute 

error and the standard deviation obtained with the RI-G3 scheme are nearly independent of the 

choice of the auxiliary basis sets except for slight differences when the aug-cc-pVTZ-RI basis is 

employed in all RI-MP2 and RI-CC calculations. When compared with the errors obtained with 

the standard G3 method, one finds that the average absolute error obtained with the RI-G3 

scheme is slightly higher, while the standard deviation obtained with the latter is slightly 

smaller when using the cc-pVDZ-RI or cc-pVTZ-RI auxiliary basis sets. Overall, the errors 

obtained with the RI-G3 scheme are very close to those obtained with the standard G3 

approach. The errors agree to within less than 0.1 kcal/mol, so no significant error is introduced 

by approximating the standard 4-2ERIs via the RI scheme. Furthermore, as demonstrated in the 

next section, the RI approximation confers significant memory savings and enhanced parallel 

efficiency to the G3 composite scheme, in particular, for the most expensive CCSD(T) 

computations.

In the next section, the computational efficiency of the RI-G3 method will be examined. For 

its small error as well as low computational cost, the cc-pVDZ-RI/cc-pVTZ-RI/cc-pVDZ-RI 

combination of AUX1/AUX2/AUX3 will be used to investigate the computational savings of the 

RI-G3 method.  

4.2. Computational efficiency and memory savings 
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In this section, the computational efficiencies and memory demands of the standard G3 and 

the RI-G3 composite schemes are compared. Since no RI approximation was applied to HF 

energy and gradient calculations, only the relative efficiencies of the RI-MP2 energy and 

gradient calculations and the RI-CCSD(T) energy calculations are assessed. Parallel 

implementations of both the MP2 and CCSD(T) methods with and without the RI approximation 

are available in GAMESS. The implementations of the standard MP2 and CCSD(T) methods both 

use a purely MPI based distributed memory parallel programming model. On the other hand, 

the recent RI-MP2 and RI-CCSD(T) implementations in GAMESS use a hybrid MPI/OpenMP 

parallelization model. Therefore, in addition to gaining efficiency from the use of the RI 

approximation, the recent RI-MP2 and RI-CCSD(T) codes derive additional efficiency over the 

standard MP2 and CCSD(T) codes from the hybrid MPI/OpenMP parallelization model. The 

latter is more efficient than the purely MPI based scheme due to the reduced network 

communication among MPI ranks and the memory demand due to data replication. The 

efficiencies of MPI/OpenMP and MPI codes are compared by running all calculations on 

identical computing resources (e.g., the number of nodes and cores per node).

The computations reported in this section were performed on a local group cluster Bolt and 

on an Iowa State University cluster Nova. The Bolt cluster has Haswell compute nodes, and each 

node is equipped with two 18-core Intel E5-2699V3 sockets with 2.3 GHz processor frequency, 

and 128 GB of memory per node. Each compute node of Nova consists of two 18-core Intel 

Skylake 6140 sockets with 2.3 GHz processor frequency and has 192 GB node memory capacity.

The first set of benchmark calculations was performed on polyaromatic hydrocarbons (PAH) 

consisting of 11-20 carbon atoms shown in Figure 2. These calculations were performed on the 

local cluster Bolt using one Haswell node. The GAMESS program runs an equal number of 

compute processes and data servers on each node. The compute processes perform the actual 

quantum-chemical computation, while the data servers are engaged in data communications 

between the compute processes.40 For purely MPI-based MP2 calculations using standard 4-

2ERIs, the number of MPI ranks (this number includes compute processes only) per node was 

chosen to be the number of physical cores on a CPU socket, i.e., 36. For the MPI/OpenMP 

based RI-MP2 calculations, on the other hand, one compute process was created on each CPU 
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socket, which spawned a team of threads equal to the number of physical cores on the socket, 

i.e., 18. Thus the number of compute processes per node was identical in both calculations. To 

avoid computational overlap, each MPI compute process was pinned to a socket by setting the 

environment variable MPI_PIN_DOMAIN=socket or omp. 

Figure 2. Polyaromatic hydrocarbons from 11-20 carbon atoms

The wall times for the MP2 energy and gradient calculations and the CCSD(T) energy 

calculations with and without the RI approximation are compared in Table 2. It is evident from 

Table 2 that the wall times for both the MP2 and CCSD(T) computations significantly decrease 

when the RI approximation is applied. For instance, for the largest  molecule, the total 𝐶20𝐻12

MP2 wall time for the energy and gradient parts reduces by a factor of ~7.5x. For the same 

molecule, the CCSD(T) wall time reduces by a factor of ~1.5. These results indicate the wall 

times for the RI-MP2 energy and gradient calculations are virtually negligible in comparison to 

the standard MP2 calculations on these systems. 

Table 2. Wall times for the MP2 energy plus gradient calculations and RI-CCSD(T) energy 
calculations on polyaromatic hydrocarbons (Figure 2) with and without the RI approximation.
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G3 RI-G3
PAH

MP2 (s) CC (s) RI-MP2 (s) RI-CC (s)
𝐶11𝐻10 74.1 421.5 8.3 187.7
𝐶12𝐻10 95.9 606.0 11.7 314.5
𝐶13𝐻10 131.7 914.6 15.1 460.2
𝐶14𝐻10 150.7 1259.1 18.4 645.3
𝐶15𝐻10 208.0 1773.8 24.3 927.6
𝐶16𝐻10 243.4 2403.7 28.8 1274.0
𝐶17𝐻12 329.1 3732.9 40.2 2248.3
𝐶18𝐻12 380.2 4611.8 46.9 2737.7
𝐶19𝐻12 523.2 7130.9 60.7 4295.9
𝐶20𝐻12 540.1 8272.9 71.6 5574.7

The second set of benchmark calculations was performed on a peptide chain consisting of 

eight alanine molecules, , shown in Figure 3. The purpose of this benchmark is to (𝐴𝑙𝑎𝑛𝑖𝑛𝑒)8

compare the memory requirements and wall times for the most expensive component of the 

G3 composite scheme, i.e., the CCSD(T) calculation with and without the RI approximation. 

These calculations were performed with the 6-31G(d) atomic basis and the cc-pVDZ-RI auxiliary 

basis sets. Within these basis sets, the CCSD(T) calculations entail a total of 699 atomic basis 

functions, 3312 auxiliary basis functions, and 116 correlated occupied orbitals. 

Figure 3. A polypeptide chain of eight alanine units
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The CCSD(T) implementation in GAMESS based on standard 4-2ERIs41 and the recent RI-

CCSD(T) implementation19 use different parallel models. In addition, the underlying equations 

are different in the two implementations in terms of the factorization schemes applied to the 

CCSD amplitude residuals. Hence, the sequential algorithms are quite different. Despite these 

differences, running both programs on an identical number of cores is a reasonable strategy for 

comparing their parallel efficiencies. The polypeptide calculations were performed on Nova 

using 4, 8, 12, and 16 compute nodes. For the RI-CCSD(T) calculations, one MPI rank per node 

was used, which was combined with nine OpenMP threads per MPI rank. The MPI ranks were 

pinned to CPU sockets as described above, while the OpenMP threads were bound to physical 

cores on that socket. For the standard CCSD(T) calculations, nine MPI ranks were used on every 

node. Thus, the total number of compute cores was identical in both calculations for each of 4, 

8, 12, and 16 nodes.

The memory requirements for these calculations are compared in Table 3. The MPI based 

standard CCSD(T) program uses distributed storage for 4-2ERIs throughout the entire 

calculation.41 On the other hand, the RI-CCSD(T) program adopts an integral-direct strategy, in 

which the 4-2ERIs are fully or partially (as three index tensors within loops) assembled on the 

fly. In the RI-CCSD part of the algorithm, the 4-2ERIs labeled with four virtual indices, i.e., 

(VV|VV), and those labeled with two occupied (O) and two virtual (V) indices, i.e., (VV|OO), are 

assembled in a distributed manner on a number of MPI ranks. Thus, in both standard CCSD(T) 

and RI-CCSD(T) computations, a component of the required memory is of distributed nature, 

which implies that this memory component scales with the number of compute nodes assigned 

to the calculation. In Table 3, these components are indicated as distributed memory per node, 

and they decrease proportionately to the increase in the number of nodes. The remaining 

memory components are constant for a given system size and for a given number of OpenMP 

threads or MPI ranks assigned per node. 

Table 3 indicates that the RI approximation as well as the integral-direct strategy adopted 

for the integral assembly reduce the total memory requirement per node for the RI-CCSD(T) 

calculations by a factor of ~1.7 compared to the standard CCSD(T) calculations. Looking closely 

into individual memory components, one finds that both the shared memory required per node 
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and the distributed memory requirement are reduced nearly by a factor of two. However, the 

memory need per core (used by OpenMP threads) increases to some extent for the RI-CCSD(T) 

calculations. This memory-saving feature of the RI-CCSD(T) program is of great advantage for 

two reasons, (i) more parallel compute processes (e.g., more OpenMP threads per node) can be 

assigned for a given system size than the standard CCSD(T) code, thereby increasing the parallel 

efficiency, and (ii) larger molecular systems and/or larger atomic basis sets can be handled with 

the RI-CCSD(T) program than the system size that is usually tractable with the standard CCSD(T) 

program.

Table 3. Memory requirements (in GB) for the RI-CCSD(T) and standard CCSD(T) calculations on 
 using the 6-31G(d) atomic basis and the cc-pVDZ-RI auxiliary basis set. (𝐴𝑙𝑎𝑛𝑖𝑛𝑒)8

RI-CCSD(T) Standard CCSD(T)

Number 
of nodes

Memory per 
core 

(OpenMP 
thread)

Shared 
memory 
per node

Distributed 
memory per 

node

Total 
memory 
per node

Memory 
per core 

(MPI rank)

Shared 
memory 
per node

Distributed 
memory per 

node

Total 
memory 
per node

4 1.0 53.9 42.2 105.1 0.3 96.0 96.5 195.2
8 1.0 53.9 21.1 84.0 0.3 96.0 48.3 147.0

12 1.0 53.9 14.1 77.0 0.3 96.0 32.2 130.9
16 1.0 53.9 10.5 73.4 0.3 96.0 24.1 122.8

Table 4. Average wall times per CCSD iteration (in min) for the RI-CCSD(T) and the standard 
CCSD(T) calculations for  using the 6-31G(d) atomic basis and the cc-pVDZ-RI (𝐴𝑙𝑎𝑛𝑖𝑛𝑒)8

auxiliary basis. 

Number of nodes RI-CCSD iteration Standard CCSD iteration Speedup
4 35.43 131.33 3.7
8 18.87 82.29 4.4

12 15.17 67.41 4.4
16 12.13 60.82 5.0

The wall times per CCSD iteration for  on different numbers of nodes are (𝐴𝑙𝑎𝑛𝑖𝑛𝑒)8

compared in Table 4, and the wall times for the non-iterative triples correction are compared in 

Table 5. The speedup is defined as the time required for a standard CC run divided by an RI-CC 
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run. Figure 4 compares the individual speedups of the standard and the RI-CCSD(T) codes. 

Figure 4 indicates that both the standard CCSD(T) and the RI-CCSD(T) calculations speed up 

when the number of nodes is increased. As a result, the speedup values reported in Tables 4 

and 5 remain nearly constant. Since the RI-CCSD iteration shows a better speedup than the 

standard CCSD iteration, as indicated by Figure 4a, the speedup of the RI-CCSD iteration relative 

to the standard CCSD iteration slightly increases as the number of nodes increases from 4 to 16. 

The speedup values reported in Table 4 indicate a significant time saving when using the RI 

approximation. The improved factorization scheme offered by the use of RI integrals,19 which 

permits organizing the CCSD amplitude residuals into a compact quasi-linear form, largely 

contributes to this time saving. These results also indicate that the RI-CCSD algorithm is more 

amenable to efficiency enhancement with an increase in the number of parallel compute 

processes than the standard CCSD(T) algorithm. This stems from the highly memory–economic 

integral-direct strategy adopted in the RI-CCSD algorithm, which allows storing all requisite data 

in the node memory and completely bypasses the communication cost associated with fetching 

data from distributed memory that is done in the standard CCSD algorithm. 

Figure 4. Speedups for (a) CCSD iteration and (b) (T) correction relative to the wall time for 
the four-node calculation.
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One finds from Table 5 that the wall times for the (T) correction reduce by several hours 

when using the RI-CCSD(T) code in comparison to the standard CCSD(T) code. Furthermore, 

Figure 4b indicates that the (T) correction part of the RI-CCSD(T) code shows a better speedup 

than the standard CCSD(T) code. However, the time saving is not as significant in this case as for 

the CCSD iteration, which is indicated by smaller speedup values for (T) correction reported in 

Table 5. Unlike in the case of the CCSD iteration, one cannot explore the full advantages of 

using the RI approximation when designing the (T) correction algorithm. The (T) correction is 

the most compute-intensive step. Therefore, repeated on-the-fly integral assembly when using 

the RI approximation would further increase the computational task. For this reason, it is 

beneficial to preassemble the requisite four-center ERIs prior to computing the (T) correction to 

the energy. This preassembling in turn reduces the algorithmic difference between the RI-

CCSD(T) and the standard CCSD(T) codes. However, it is important to note that the recent RI-

CCSD(T) implementation19 completely bypasses the repeated memory bandwidth bound index 

permutation operations in sharp contrast to the previously implemented MPI-based standard 

CCSD(T) code.41 The observed time savings for the RI-CCSD(T) calculations are thus mainly 

associated with the efficiency gained by eliminating the index permutation operations. 

Table 5. Wall times for the (T) correction (in hours) for the RI-CCSD(T) and the standard CCSD(T) 
calculations on  using the 6-31G(d) atomic basis and the cc-pVDZ-RI auxiliary basis.(𝐴𝑙𝑎𝑛𝑖𝑛𝑒)8

Number of nodes RI-CCSD(T) CCSD(T) Speedup
4 129.7 132.1 1.0
8 59.5 75.1 1.3

12 43.0 60.0 1.4
16 30.5 35.1 1.2
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5. Concluding remarks

The MPI/OpenMP + RI motif can be used to enhance computational efficiency and reduce 

the memory demand of composite methods with no loss of accuracy. Introducing the RI 

approximation to the G3 method with a modest combination of auxiliary basis sets resulted in 

an increase in the average absolute error by less than 0.1 kcal/mol and an unaltered standard 

deviation in calculated heats of formation for closed-shell molecules of the G3/99 test set. The 

MPI/OpenMP + RI can speed up the G3 MP2 energy plus gradient component by ~7.5x in 

calculations of polyaromatic hydrocarbons of 11-20 carbon atoms. The same computational 

motif also reduces memory demands of the G3 CCSD(T) component by nearly a factor of 2, 

speeds up CCSD iterations by a factor of ~4.0-5.0, and decreases the wall time for the non-

iterative triples correction step by several hours in calculations of a polypeptide chain of eight 

alanine units. It is anticipated a similar approach based on the RI and on a hybrid OpenMP/MPI 

approach would benefit other composite methods, such as the Wn and ccCA formulations.
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