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I. INTRODUCTION 

Stress-strain relationships in materials are not inde­

pendent of time, as is tacitly assumed in classical elastic 

theory. The existence of stress-strain-time relationships in 

wood were recognized at least as early as 1833 by Franz Joseph 

Bitter von Gerstner (51)'. Two common examples of such rela­

tionships are creep, the strain-time behavior under constant 

stress, and stress relaxation, the relationship between stress 

and time under constant strain. There are, however, many 

other types of material behavior documented which are mani­

festations of an interaction between stress, strain and time. 

The description of time-related mechanical behavior is usually 

classified within a branch of physics called rheology, the 

study of the deformation and flow of matter. 

If a reliable description of the rhéologie properties of 

wood perpendicular to the grain can be established, several 

common problems associated with wood and its use may be more 

thoroughly dealt with. For example, for stresses and strains 

perpendicular to the grain, most clamping problems must be 

associated with time-related behavior. Difficulties encoun­

tered in maintaining clamping pressure at a desired magnitude 

for extended periods of time are at least in part manifesta­

tions of stress relaxation. The age old problem of loosening 

of tools on wooden handles has recently been suggested as a 
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time-related stress problem (4-8). When wood dries and begins 

to shrink, rather severe and complex stress systems are 

imposed across the grain. Permanent deformations usually 

occur, which cause the wood to have built-in stresses in the 

dried condition. The occurrence and relief of these stresses 

must be subject to rhéologie considerations. Stress relaxa­

tion may play a role in the loosening of nailed Joints. As a 

final example, the established mechanical properties of wood 

are affected by the time-rate of testing. 

This research has been conducted to devise methods for 

describing some aspects of the perpendicular to the grain 

time-related behavior of wood. Uniaxial stresses and strains 

perpendicular to a longitudinal-radial plane were considered, 

in tension and compression. A single temperature and relative 

humidity were employed, yielding an equilibrium moisture con­

tent of about 12 percent. Duration of each test was about 14 

weeks. It is hoped that the results of this study will lead 

to reliable engineering criteria for predicting the stress-

strain-time behavior perpendicular to the grain, at least for 

relatively low temperatures. No consideration is given here 

to the role of anatomic structure in rhéologie behavior. The 

approach to analysis deals with macroscopic parameters, and it 

is assumed that wood is a homogeneous continuum. 
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II. REVIEW OP LITERATURE 

Throughout this review, interest is focused on rhéologie 

phenomena from a qualitative point of view. Species used in 

experiments, or values of properties obtained are not consid­

ered pertinent. It is of interest to know the general nature 

of time-related behaviors which have been observed and de­

scribed in the literature and, where these behaviors have been 

described mathematically, the form of such functions. 

W. Weber (52), in 1841, wrote a paper discussing what he 

called "elastische Nachwirkung". Todhunter and Pearson (50) 

translated this term as "elastic after-strain". According to 

the latter authors, "... it differs from elastic fore-strain 

in that it requires a certain duration of load; it differs 

from set in that if the load be removed for a certain period 

the after-strain disappears." Thus, as early as 1886, several 

rhéologie phenomena were named and fairly well defined. In 

current literature, the elastic after-strain is called creep. 

Elastic fore-strain is more commonly called instantaneous 

elastic strain. Set, as defined by Todhunter and Pearson, is 

now often called flow, or secondary creep. The modern concept 

of set is not defined in the same fashion. Bather it is taken 

to mean the amount by which strain exceeds the elastic limit 

strain, where time is not a consideration. 

Von Gerstner (51) experimented with flexure in wooden 
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beams, and gave some indication that he recognized a creep 

effect. In 1848, E. Ohevandier and G. Wertheim (8) reported 

the results of studies of beams in flexure, in which an in­

crease in deflection was observed with increasing time, even 

at relatively small loads. Numerous other experiments have 

been documented where wood has exhibited a pronounced time-

related behavior. The behavior has appeared in many different 

experimental forms. Several such forms will be discussed in 

the following sections. Most of the experiments were conducted 

in bending, and essentially all of them were conducted such 

that the normal stresses were parallel to the grain. 

A. Strength-Time Relations 

In early efforts to obtain and tabulate the strength 

properties of wood, it was recognized that such properties 

depended, to a considerable extent, upon the time in which the 

tests were performed. The bending properties were thus evalu­

ated on two bases, impact bending, where the entire duration 

of test was a very small fraction of a second, and static 

bending, where the tests were conducted at a constant deflec­

tion rate for a total time of about 4 minutes. From scanning 

the property tables of Markwardt and Wilson (36), it appears 

that the proportional limit is roughly 100 percent higher in 

Impact bending, based on an equivalent static load, than in 

static bending for dry wood. 
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Brokaw and Poster (7) and Id ska (32) reported the effect 

of loading at a constant rate to failure in a range of loading 

times from about 1/2 second up to 750 seconds. Experiments 

were conducted in compression parallel to the grain and in 

bending. Results of these works provide some rules of thumb 

for adjusting values of properties according to loading time. 

Figure la shows a representative relationship. Ultimate 

strength was related to time by a function of the form 

P = a + b log T 

where P is strength, T is time, and a and b are constants. 

Wood (53) has reported the results of experiments in bending 

under constant load for a duration of greater than five years. 

Using these data, and those of Liska reported above, he fitted 

an expression of the form 

(P - a)Tb = c 

where c is a constant. The graph of this expression, shown in 

general in Figure lb, has been published in a great many wood 

design and property handbooks, and is used widely as a means 

for establishing duration of load effects in design. 

The studies discussed above represent efforts to corre­

late strength with time, leading to useful predlcters for 

design purposes. The functions employed are somewhat arbi­

trary ; a number of mathematical forms could be made to fit the 
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P = a • d LOG 1 

Figure la. 

TIME TO ULTIMATE STRESS, T 

The effect of rate of load application on the 
ultimate compressive strength for Douglas fir. 
Due to Liska (32) 
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Figure lb. Relation of working stress to duration of load. 
Due to Wood (53) 
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same data. It is of Interest to note that, in every case, as 

the time required for failure increases, strength decreases, 

sharply at first and then more slowly. 

B. Rate of Loading 

If wood is tested at a constant strain rate, the result­

ing stress-strain diagram depends on the magnitude of the 

strain rate. Figure 2 shows a typical result from work re­

ported by Liska (32). Higher loading rates led to a higher 

proportional limit and higher strength, but no measurable in­

crease in modulus of elasticity. Other investigators have 

endeavored to describe the rate of loading effect mathemati­

cally (28, 58)• Clearly, this behavior indicates that the 

effects of time must be incorporated with conventional elastic 

concepts for a more adequate description of the material. 

0. Hysteresis 

Consider a specimen of wood loaded at a constant rate of 

load to a stress above the elastic limit but less than the 

ultimate strength of the material, and then unloaded at the 

same rate. Classical elastic-plastic theory admits a stress-

strain diagram as shown in Figure 3a, where the area between 

loading and unloading curves is considered to be the energy 

lost in plastic deformation. The strain above the proportional 

limit is not recovered, and is called set. Ko11man (27) has 
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Figure 2. Typical load-deflection curves for two matched 
Douglas fir flexure specimens. Due to Li ska 
(32) 
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STRAIN set 

Figure 3a. A stress-strain diagram according to 
classical elastic-plastic theory 
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Figure 3b. Stress-strain diagrams for beech stressed 
across the grain. Due to Kollman (27) 
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reported the results of experiments with wood stressed per­

pendicular to the grain, where the stress-strain diagram 

deviates markedly from the classical theory. In Figure 3b, 

it can be seen from one of Ko11man1s diagrams that strain 

continues to increase for a time after the load has begun to 

drop, and that it is decreasing rapidly at the time of com­

plete unloading. Kollman indicated that considerable recov­

ery of strain occurred if suitable time was allowed after the 

test. There exists, then, an "elastic hysteresis" which must 

depend on the rate of loading and unloading, and therefore, on 

time. 

D. Creep and Stress Relaxation 

When an experiment is to be performed to obtain relation­

ships between three variables, perhaps the most common experi­

mental method used is to hold one of the variables constant 

and observe the joint behavior of the remaining two. If a 

constant stress is imposed on a wood specimen, and strain-time 

data are collected, the creep curve shown in Figure 4a may be 

plotted. Clouser (10) has pointed out that, in tension or 

bending, if the stress is high enough, then the creep curve 

may pass through a point of inflection, curve up rapidly, and 

reach a point of complete failure. Such behavior will not be 

studied here. If, at some time t^, the constant stress is 

removed, and data collection continued, then the creep recovery 



11 

creep creep recovery 

TIME, ? 

Figure 4a. Creep and creep recovery In red oak In tension 
perpendicular to the grain. Due to Youngs (59) 
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Figure 4b. Stress relaxation in red oak in tension 
perpendicular to the grain. Due to Youngs (59) 



12 

behavior is obtained. Leaderman (30) has documented develop­

ment of mathematical theories on creep and related phenomena 

in filamentous materials dating from the Igth century. Nadai 

(39, 40) has presented some of the theories used for metals. 

It is apparent from Figure 4a that the creep recovery is 

approaching a horizontal asymptote, and that all of the creep 

strain will not be recovered. This irrecoverable portion of 

the strain is usually called flow. It is inconceivable that a 

specimen could continuously develop irrecoverable strain with­

out failure. For this reason, a precise description of flow 

behavior is of paramount importance. 

If a constant strain is imposed on a wood specimen, and 

stress-time data are taken, the stress is seen to decay as 

shown in Figure 4b. Apparently, with wood, it does not decay 

to zero, but approaches an asymptote. 

Many experiments have been conducted with wood to obtain 

some knowledge of the creep and relaxation behavior. In the 

following reviews, these works will be organized according to 

the state of stress used in the experiments. 

1. Axial stress 

KhukhryanBkii (20) presented relaxation curves for wood 

in compression parallel to the grain which show the stress 

decaying to some finite asymptote. His curves indicate that 

the stress remains approximately proportional to strain for 
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all times, if the initial stress does not exceed the static 

proportional limit. He obtained creep recovery data from 

matched specimens, and here strain was proportional to creep 

stress for low stresses, but a large deviation from propor­

tionality was observed at a stress equal to about the static 

proportional limit. It is suggested that anatomical changes 

must occur to cause the non-linearity, and that creep recovery 

can be used to identify the proportional limit. Mlnami (37) 

observed creep in tension parallel to the grain at 15 to 20 

percent of the estimated ultimate strength, and what appeared 

to be a non-recoverable strain at 50 percent of ultimate. 

Diet2 (13) experimented with Douglas fir in tension and com= 

pression parallel to the grain, and in bending, for durations 

of from 100 to 800 hours. His results indicate that creep in 

all cases is sufficiently low to be almost negligible if the 

stress is below the estimated proportional limit. However, 

bonded resistance wire strain gages were used. Time-related 

properties of gage and adhesive may have affected the results 

of the experiment, which is not in agreement with others in 

the literature. Wood, et. al. (54), performed some exploratory 

experiments with wood in tension and compression parallel to 

the grain for periods of up to two years. Substantial amounts 

of creep, creep recovery after load removal, and stress relax­

ation were observed. Creep recovery was occurring 500 days 

after unloading, but it did not appear that the strain would 
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have been completely recovered if the experiment had been 

continued indefinitely. Creep curves were represented by a 

function of the form 

s = atb 

where « is unit strain. Kitazawa experimented with relaxation 

of stress perpendicular to the grain. He employed the func­

tion 

ae0" = tb 

Kitazawa suggests that the expression only works for stresses 

from 30 to 50 percent of the proportional limit. King (21) 

obtained and plotted creep versus stress level in tension 

parallel to the grain, and fitted an exponential to the re­

sults. In later works (22, 23) King used two straight lines 

to fit the same data. Kellogg (19), following the work of 

King, studied the relationship between creep and initial strain 

level. Here, too, an exponential relationship was used. 

Murphey (38) worked with wood in tension parallel to the grain 

at several stress levels, and simultaneously studied, by means 

of x-ray diffraction, the way in which crystallinity of the 

cell walls changed with increasing strain. Results indicate 

some of the initial strain is not recoverable. 



15 

2. Bending stress 

A number of rhéologie experiments have been conducted in 

bending. There are perhaps two reasons for working in bending. 

Host of the wood that is used structurally is used in bending. 

Also, small strains can be manifested in large, easily measur­

able deflections due to small, easily manageable loads, so 

that the experiment is relatively easy to perform. However, 

a disadvantage of at least theoretical importance also exists 

in a bending experiment. There is no reason to believe that 

rhéologie behavior must be quantitatively similar in tension 

and compression. Then, if the stresses and strains are com­

puted from load-deflection data, using the common engineering 

formulas, these stresses and strains have questionable valid­

ity. 

Olouser (10) used the power function 

, b e = eQ + at 

to express creep behavior for periods up to 10 years. Here s0 

is initial strain, a constant. It was pointed out that th% 

constant b appeared to be independent of stress level at least 

up to 60 percent of the ultimate strength in bending. Yamada, 

et al. (56), employed a linear combination of a power term and 

a logarithmic term to describe creep in bending. Long-term 

loading tests reported from Great Britian (33) indicate that 

for over three years, about one-half of the strain that occurs 
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Is recoverable. Brokaw and Poster (7) reported the results of 

stress relaxation tests, and found little relaxation for 

stresses less than 50 percent of the static ultimate. 

3. Shear stress 

Norris and Kommers (41) observed creep in plywood plates 

subjected to shearing stresses in the plane of the plywood. 

The results were fitted reasonably well by an expression 

derived from 

d = aeb(de/dt)° 

This expression will never admit stress relaxation, however. 

For, if a constant strain is used, then de/dt = 0 and the 

stress is Identically zero for all times. 

The various studies relating stress, strain and time 

discussed to this point have almost all been performed such 

that stresses are parallel to the grain. The mathematical 

models used to fit experimental data, in most cases are sub­

ject to the criticism that they permit infinite response as 

time approaches infinity. This behavior is unacceptable in 

view of the tendency for creep recovery and stress relaxation 

to reach finite asymptotes. The following general conclusions 

about wood can be drawn from the works reviewed. 

a. Wood exhibits creep, creep recovery, and stress 

relaxation. 
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b. The time-related strain phenomena probably occur at, 

and above, very low stress levels, if sufficiently 

sensitive detecting equipment is used. 

c. Stress and strain appear to be proportional at any 

time t, at least for suitably low stresses. 

d. In creep, all of the strain cannot be recovered if 

the load is removed. No precise Indication is avail­

able of how much strain is Irrecoverable. 

e. In stress relaxation, the stress does not relax com­

pletely. 

The behaviors discussed in the preceding paragraphs are 

all manifestations of some general interrelation of stress, 

strain and time. If a general function relating the three 

variables were available, then It should be possible to unite 

the results of all time-related experiments into one unified 

theory. The beginnings of such a general function date back 

to the late 19th century, and are credited to L. Boltzmann. 

E. Boltzmann1s Principle and Viscoelastic Theory 

A general mathematical theory has been developed to de­

scribe time-related mechanical phenomena. It has often been 

found particularly applicable to high polymers. A great deal 

has been written about viscoelasticity in recent years. 

Mathematical developments may be studied in the following 

references (1, 2, 5, 6, 14, 30, 43, 45). A number of the 
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sources mentioned above also contain accounts of applications 

of the theory to various substances. In general, the theory 

of viscoelastic!ty has the following Important properties: 

a. It provides a general stress-strain-time function» 

b. It is mathematically possible to describe creep, 

creep recovery, and stress relaxation as related 

phenomena within the scope of this function. 

c. It reduces to classical elastic theory as an initial 

condition. 

In a one-dimensional case, the general stress-strain-time 

function for linear viscoelastic!ty may be written 

c = J* k(t - u)£2llil du 
-00 au 

where k(t) is an experimentally accessible strain response to 

constant stress; that is, a mathematical expression of the 

creep behavior, The function k(t) is an arbitrary function 

which fits the data. One such function commonly employed is 

k(t) = kn + E k» (1 - e ^Ui) + 1 
1=1 ? 

Here , k0, kj_ and Uj_ are constants. The summation index n 

is taken large enough to obtain any desired closeness of fit. 

The first term accounts for an instantaneous elastic strain 

when a stress is imposed. The summation term is used to de­

scribe the elastic portion of creep strain, and the last term 
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permits description of irrecoverable strains, as a linear 

function of time. Of all functions mentioned thus far for 

describing creep behavior, only k(t) contains a time dependent 

term which remains finite as time approaches infinity. Mate­

rials which obey the function k(t) are said to be linear 

viscoelastic materials. 

In an analogous development, stress relaxation is de­

scribed by means of the expression 

m _t/u-
m(t) = mQ + S m.e ~1 

i=l 1 

The creep and relaxation functions are related by their 

Laplace transforms. 

L [ > ( t ) : 1  =  ]  

where p is the transform parameter. Alfrey (2) has shown that 

the above expressions are equivalent to a linear combination 

of terms containing stress, strain, and their time derivatives. 

P. Viscoelastic Behavior of Wood 

A number of researchers in recent years have explored 

the possibility of using linear viscoelastic theory to 

describe wood behavior. These efforts have been directed 

primarily toward parallel to grain stresses. The series in 

the Section E are sufficiently powerful to fit any function 

having an asymptote at large t. The problem then 
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reduces to one of checking for linearity between stress and 

strain, and of obtaining the fit. 

Grossman and Kingston (1?) performed 50 day creep and 

relaxation experiments in bending, and attempted to predict 

the results of one from the other, by means of the Laplace 

relationship. Using n = 3, they concluded that the relation­

ship was correct except for the flow effect, which appeared 

to be nonlinear. Kingston and Olarke (24), in bending and 

shear, found linearity to about one-half of the ultimate 

strength. After a nonlinear behavior, in some cases, linear­

ity was observed in a second stress range. Some anonymous 

work (44) published In Australia suggests an upper limit of 

linearity of about 67 percent of the ultimate strength. 

Pentoney (42) using a flexural vibration technique which may 

be developed from the viscoelastic expressions presented above, 

found linearity for short times and low stresses. Davidson 

(11) reported linearity in bending at one-half the static 

ultimate and for times up to about 100 minutes. Youngs (59) 

performed a few creep, creep recovery and stress relaxation 

tests on wood perpendicular to the grain for 70 hours and at 

from 4o to 90 percent of the ultimate strength. He found that, 

on the basis of his work, creep is greater in tension then 

compression for both the recoverable and non-recoverable com­

ponent. He indicates that this observation may be due to 

experimental difficulty. The data were fit with a function of 
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the form 

b 
s = sQ + at 

which is the same as that employed by Clouser (10/ In bending. 

It was found that recoverable creep was linearly related to 

stress, but the irrecoverable creep appeared to increase more 

than proportionately with stress. Figure 5 shows the experi­

mental relationship between stress and Youngs' estimate of 

flow. 

On the basis of work reported, it appears that it may be 

possible to use viscoelastic theory to describe time-related 

mechanical behavior of wood perpendicular to the grain. The 

linear theory does not seem to provide an adequate means for 

describing flow effects. 
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STRESS 

Figure 5. The relationship between irrecoverable creep, 
stress and time for red oak. Due to Youngs 
(59) 
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III. THEORETICAL CONSIDERATIONS 

In this study, it is desired to develop a means for 

accurately describing the stress-strain-time behavior of wood 

in tension and compression perpendicular to the grain, and for 

relatively long times. A general function will be considered 

adequate if it meets the following requirements. 

a. It must be possible to manipulate the function to 

produce all of the experimentally observable re­

stricted behaviors. These behaviors include creep, 

creep recovery, stress relaxation and irrecoverable 

strain or flow or their equivalents. 

b. It must contain enough arbitrary constants to fit 

experimental results to any desired degree of accu­

racy. 

c. It must be well-behaved in the limits. That is, as 

t—»-0 it must reduce to elastic theory, and as t ->• oo 

it must predict finite strains commensurate with 

physical reasoning. 

d. It must be workable in an engineering sense. This is 

a rather loosely defined requirement. 

A complete list of the symbols used in the following consider­

ations may be found in Appendix A. 

Consider a wood specimen subjected to a uniaxial, con­

stant stress perpendicular to the grain. If strains are 
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observed at several times and plotted, there results a curve 

having the form shown in the creep phase of Figure 4a. The 

second phase, creep-recovery, is that observed if the stress 

is removed at some time t^. According to theory, creep may be 

described by the expression 

Here Dff is called the glass compliance. It is the compliance 

associated with an instantaneous, recoverable strain obtained 

at the instant the stress is imposed. The adjective "glass" 

is used because many glass-like materials behave independent 

of time over a wide range of temperatures. The D^ and are 

constants, and the summation expression, for suitable n, can 

be made to describe a recoverable creep phenomenon, so long as 

the creep approaches some asymptote for long times. The con­

stants Tj_ are often called retardation times, because they 

have units of time, and because creep rate decreases as the 

increases. The last term is used to describe irrecoverable 

creep, or flow. It is very restricted in its behavior, be­

cause it implies a linear relation between strain and time. 

Diagrammatically, this implies that for very large times the 

creep curve must approach constant slope. The bracketed por­

tion of 1 is called D(t), the creep compliance function or 

simply the creep function. If tA is subtracted from both 

(1) 
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sides of D(t), there results 

DB(t) = D(t) - | = d + 2 D±(l - e"t/Ti) (la) 
g 1=1 

where D-g(t) is called the elastic compliance. Furthermore 

is the equilibrium elastic compliance. It is sometimes useful 

to suppress the glass compliance in la, and work with the 

delayed elastic compliance 

It is to be noted that D(t) is independent of stress level. 

It is implied that stress is proportional to strain for any 

time. As an initial condition this is Hooke's law, and it is 

commonly referred to as the linearity condition in viscoelas-

tic theory. 

If the specimen is subjected to a constant strain and 

stress-time data are taken, there results a curve such as 

Figure 4b. Then, in theory, 

n 
D = lim Dv(t) = Do. + E D, 
6 t-co ° i=l 1 

(lb) 

1=1 

( 2 )  

The Ej_ and are constants. The in 2 are not the same as 

the ri in 1, although by convention the same symbol is usually 
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used. Here they are called relaxation times, and the stress 

decreases as the Tj_ increase. The bracketed portion of 2 is 

called the relaxation function E(t). It follows that 

3. = lis B(t) (2a) 
t—oo 

where Eg is called the steady state elastic modulus. It is 

also useful to define 

m 
E„ = lim B(t) = E + £ E1 (2b) 

t—0 e i=l 1 

Eg is the glass modulus. It is the same as the conventional 

modulus of elasticity if the conventional modulus is assumed 

to be determined in an infinitely short experiment. 

Apparently a material which exhibits a behavior described 

by 2 would not exhibit flow in a creep experiment. In the 

limit as time approaches infinity in 1, the flow strain also 

becomes infinite. If some sort of molecular mechanism exists 

which will permit this flow behavior, the same mechanism would 

cause complete stress relaxation. But 2 has a finite limit at 

infinite time, as indicated by 2a. If, in a relaxation exper­

iment, complete relaxation does occur, then additional terms 

are required in 2 to account for this phenomenon. 

It is possible to show that the strain response to any 

general stress system cr(t) is given by 

e (t) = J D(t - u) du (3) 
-co QU 
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Expression 3 is often called Boltzmann's superposition prin­

ciple. The integral is a stress-history integral."*" The 

strain at time t depends on stresses at all previous times u, 

on the elapsed time (t - u) and on the strain response of the 

material to constant stress, D(t). Implicit in the deriva­

tion of Boltzmann's principle is the assumption that irrecov­

erable strains are not allowed. Otherwise the function D(t) 

can be any functional representation of creep behavior, in­

cluding la. 

An analogous expression of Boltzmann's principle is 

a ( t )  =  J  E( t  -  u ) d!(u) du (3a) 
-oo 

where the kernel is the stress response to constant strain. 

Now if 3 and 3a are both general stress-strain-time functions, 

independent of any flow effects, they must be equivalent. 

Gross (15) has shown that the elastic creep compliance Dg(t), 

and the relaxation modulus E(t) are related by the expression 

C D B ( t > 3 = 7 w T ï  1 4 1  

Although the mathematical development of 4 is perfectly 

rigorous, one is not assured that the Laplace transforms of 

^For additional information on history integrals, see, 
for example, (55, p. 194). 
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De(t) and E(t), or the inverse transforms, can be easily 

established. Perry (14), MacLeod (34) and others have dis­

cussed approximations to these functions, but for which the 

transforms are relatively easy to manipulate. Bateman (4) has 

tabulated a great number of transforms and inverse transforms. 

If a stress history on a specimen is imposed as a se­

quence of step functions, then 3 may be written in finite form 

as 
<1 

e(t) = 2 D(t - u<) Ao(uj) (5) 
j=l '] 

Here, the stress is imposed in q steps, Acr(Uj), each being 

imposed at time u^. This permits description of the creep 

recovery phenomenon, for unloading corresponds to imposing a 

negative stress in 5 equal to the original stress. It can be 

shown that, according to 1 and 5, the strain at any time after 

stress removal is 

e ( t )  =  ^  D 1 e ™ t / T i ( e
t l / / T l  -  1 )  J  ( 6 )  

Here, t^ is the time of stress removal. The behavior for t>t^ 

is creep recovery. It is of interest to look at the difference 

between the maximum strain achieved, at time t^, and the strain 

thereafter. If this difference is called recovery strain, 

e (t), it may be expressed as 

er(t) = crj^Bg + Z Di(l - e tl,/'Tl)(l - e ^ ̂l)/?!) J (y) 
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There are several points of interest associated with 7» Dg 

appears in the same fashion in 1 and 7. Therefore, the 

instantaneous elastic behavior is precisely the same if the 

stress is imposed or removed, No term expressing flow appears. 

This leads to an experimental means for obtaining creep be­

havior without Irrecoverable strains. If t-j/r^ » 1 for all 

Tj_, then er(t)/or is approximately the same as D(t) without 

flow. The validity of the inequality must be checked against 

any experimental results. If it holds, then it is possible to 

obtain delayed elastic effects from a recovery experiment. 

The corresponding flow effects may be obtained from the creep 

portion of the experiment. This is done simply by obtaining 

the difference between creep and recovery strain. Thus 

cf(t) = e(t) - er(t) (8) 

The compliance, D(t), and the modulus, E(t), are material 

properties analogous to their elastic counterparts. Here the 

properties cannot be expressed as constants, but as functions 

of time. 

Much of the literature defers to a natural mathematical 

extension of 1 and 2. If n and m are allowed to approach 

infinity, it is possible to get unique expressions of the 

creep and relaxation behavior in the form of integral equa­

tions. Although the uniqueness property, not enjoyed by 1 and 

2, is theoretically desirable, computational difficulties 
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arise in attempting to fit experimental data, as discussed by 

Perry (14). In addition, the integral forms are not consid­

ered to be usable in an engineering sense, which is one of the 

requirements of this work. The integral forms may, however, 

lead to a better understanding of the role of wood structure 

in rheology, if suitable research is conducted in that area. 
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IV. EXPERIMENTAL INVESTIGATION 

A. Experimental Techniques 

Creep experiments were used in this research for experi­

mental verification of the viscoelastic concepts for wood 

perpendicular to the grain. It was felt that it is easier to 

experimentally meet the assumptions of the theory in creep 

than those of stress relaxation. In a stress relaxation study, 

it is necessary to impose a constant strain, and measure 

stress changes with time. However, any stress measuring de­

vice in the test system must necessarily behave elastically. 

If it is stiff, it has poor sensitivity. If it is soft, it is 

difficult to hold strain constant in the specimen, because the 

device changes strain as the stress relaxes. By comparison, 

in a creep experiment, a means can be devised to simply hang 

a weight to induce a constant stress in the specimen. It is 

assumed that no measurable change in the cross-section of the 

specimen will occur during the experiment. 

The specimens were loaded so that the stress was always 

perpendicular to a longitudinal-radial plane. In this way, it 

was possible to obtain the specimens from a flat-sawn board. 

Red oak (Quercus spp.) was used for a number of reasons. 

Among the hardwoods, its static properties are best known. It 

is a species which is commercially very important. It exhibits 

greater seasoning problems than most species. It is available 
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locally for easy selection. It was desired to study the time-

related behavior independent of the effects of moisture con­

tent and time. A convenient room was used where atmospheric 

conditions were controlled at 80 degrees Fahrenheit and 65 

percent relative humidity. This corresponds to an equilibrium 

moisture content of about 12 percent, based on the oven-dry 

weight of the wood. 

Tensile and compressive behavior were studied. The test 

specimens used were those reported by Youngs (59)• They have 

a 1/4 square inch least cross-section, making it possible to 

obtain easily measurable strains with relatively small loads. 

The two types of specimens arc shewn in Figure 6. One flat-

sawn board 2 by 10 inches in cross section was obtained in the 

green condition. The board was sawed into wafers 1/2 inch 

along the grain. The wafers were numbered consecutively. 

They were placed on stickers, and over a period of weeks they 

were moved through a sequence of conditioning rooms to obtain 

slow, stress-free drying. At the end of the conditioning se­

quence they were stored in the room where the tests were to be 

conducted. 

The wafers were inspected after conditioning, and a few 

were culled due to growth irregularities. About every third 

specimen was segregated from the batch and stored for a 

separate study. Of those remaining, 16 evenly spaced wafers 

were designated for control specimens. The remainder were 
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assigned for creep tests. The specimens were machined, and 

again stored on stickers in the test room. The control speci­

mens, eight for each stress state, were tested at a constant 

rate of strain to failure. The average of eight strength 

values were used as an estimate of the static ultimate strength 

of the wood. 

In order to test linearity, it was decided to conduct 

tests at 20, 30, 40, 50, and 60 percent of the estimated ulti­

mate strength of the wood. For an estimate of the variation 

between specimens tested alike, two replications were made. 

In addition, a single exploratory replication was conducted at 

10 and 80 percent of the estimated strength and for both states 

of stress. 

It was necessary to devise a strain detecting device with 

a resolution of about 100 micro-inches per inch, and which was 

not itself subject to any time-related behavior. A special 

optical gage was fabricated and is shown mounted on a compres­

sion specimen in Figure 7. It has a 1-inch gage length, a 

range of about 0.06 inches, and the desired sensitivity. The 

gage is made of aluminum, and fastens to the specimen by set 

screws top and bottom. Properly adjusted, the holes made by 

these screws are no larger in diameter than the vessels in the 

oak. The front is removable for attachment to the tension 

specimen. The lower mirror remains fixed during tests, and 

the upper mirror rotates about a horizontal axis according to 



Figure 7. Optical strain gage used in creep experiments 
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the amount of strain that occurs. The gage has a multiplica­

tion ratio of about 367, when used with a scale 24.00 inches 

from the axis of rotation of the upper mirror. 

An ordinary 35 millimeter slide projector, containing a 

slide with two suitably spaced cross-hairs, and a scale were 

used for reading the strains. This assembly is shown in 

Figure 8- The scale was pasted on a circular arc of wood, 

designed to have the proper radius of curvature for linear 

strain readings from the strain gage. The cross-hairs were 

projected onto the gage mirrors and the reflected images ob­

served on the scale. Differences between fixed and movable 

readings at different times then represent strains, when 

divided by the multiplication ratio. 

Loads were imposed by hanging a bucket of lead shot on a 

lever system. It was necessary to hang the weight as quickly 

as possible in order to estimate the instantaneous elastic 

strain, but not fast enough to cause noticeable dynamic ef­

fects. Several levers were available so that the maximum 

weight employed in any test was 33 pounds. Although atmos­

pheric conditions were controlled in the test room, it was 

felt that considerable traffic in and out during the day would 

cause the ambient conditions to vary. Therefore, the speci­

mens were tested inside plywood boxes to buffer this effect. 

A glass pane in the front permitted reading of the strain gage. 

Figure 9 shows the tension apparatus. The entire system was 



Figure 8- Projector and scale for reading strain gages 
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Figure 9. Tension specimen and test apparatus used for 
creep experiments. During tests, the door is 
screwed firmly in place 





42 

mounted on foam rubber for vibration isolation. Sufficient 

pin-end connections were used in the systems to ensure uni­

axial loading. 

The tension specimens were gripped by bolting heavy steel 

friction plates on the ends. Electric time clocks with limit 

switches were used on the tension tests, so that if destruc­

tive failure occurred, the time would be recorded. Sufficient 

apparatus was constructed to conduct four tension tests at a 

time. 

A typical compression apparatus is shown in Figure 10. 

A cage-type specimen jig, similar to that described by Youngs 

(59), was used to change a hanging load to a compressive 

stress. For the compressive tests, no time clocks were used, 

but the date and time of day were recorded, along with strains. 

Four compression tests were conducted simultaneously. 

The experiments were somewhat exploratory in terms of 

attempting to establish a reasonable duration of test. There­

fore, the first tests, at 20, 40, 60 and 80 percent of esti­

mated ultimate strength, were watched carefully as they pro­

gressed. In some cases they were continued for up to 2700 

hours, in order to establish trends in behavior. Later tests 

were standardized to about 1700 hours of creep and 700 hours 

of creep recovery. At the beginning of the experiments 

strain-time data were recorded for times of 0, 1, 2, 3, 4, 5, 

8, 10, 15, 20, 30, 50, 100 and 300 minutes. One reading was 



Figure 10. Compression specimen and test apparatus used 
for creep experiments. During tests, the 
door is screwed firmly in place 
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taken each day for the next three days, and one reading about 

every two or three days thereafter. 

B. Analysis of Results 

The data were analyzed in terms of compliance, the ratio 

of creep strain to stress. If the stress-strain behavior for 

the material is linear, the compliance is independent of the 

stress level at which it was obtained. It is possible, then, 

to compare the variation in compliance obtained between stress 

levels with the variation for specimens tested at similar 

stress levels. By the nature of the theoretical concepts 

discussed in the previous section, it is necessary to estab­

lish the glass compliance, the delayed elastic compliance and 

the compliance associated with flow in that order. 

1. Glass compliance 

According to Equation 7, the instantaneous elastic behav­

ior observed upon loading and upon unloading are equivalent. 

Each creep and creep recovery test yields two estimates of the 

glass compliance property, Dg, from the same specimen. 

Strain changes quite rapidly with time during the first 

few seconds of a creep experiment. It is difficult to obtain 

a strain reading at precisely the instant that load is in 

place. Therefore, considerable variation was expected, and 

occurred. 
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Strain was regressed on stress by the method of least 

squares. The slope of the regression equation is Dg. Figure 

11 shows the regressions obtained in tension and compression. 

The line for compression is based upon 20 data points. The 

data at 80 percent of ultimate stress were rejected because 

the test exceeded the limits of the strain gage. One test in 

compression at the 60 percent stress level was culled due to 

experimental difficulties at the time of unloading. The 

regression for tension is based on 24 data points. 

2. Delayed elastic compliance 

In order to extract the delayed elastic compliance from 

the data, it is necessary to know the glass compliance. It 

was assumed that, for any specimen, the glass compliance ob­

tained from the regression of Figure 11 was a better estimate 

of the true glass compliance than either value obtained from 

the test of that specimen. This was done because of the large 

experimental error expected in obtaining any single value of 

Dg. Put another way, it was assumed that variation in tue 

experiment was of greater consequence than variation in the 

material. 

According to expression 7, recovery strain yields a good 

approximation for elastic compliance Dg(t), subject to the 

restriction that t^/r^ » 1. Expression la was fit to recovery 

data, using Prony's method, as documented by Hildebrand (18)• 
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Figure 11. The regression of instantaneous strain upon 
stress. All data at a particular stress 
level were averaged for plotting purposes 
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Appendix B gives a discussion of Prony's method, as applied in 

this study. Table 1 gives the ratio t-j/r^ for all specimens 

tested. 

It was found that la fit the data reasonably well if n 

was taken to be two. Then four constants, in addition to Dg, 

were evaluated by Prony's method. No one curve so obtained 

was congruent with any other. It was desired to determine if 

each curve was an estimate of the same property, as is assumed 

in linear viscoelastic theory, or if a difference in the curves 

existed between stress levels. Were possible, constants were 

treated in an analysis of variance in a completely randomized 

design. The hypothesis tested was that a particular constant 

was the same for all stress levels. Data at the 10 and 80 

percent stress levels, and at the 60 percent stress level in 

compression only, were not used in the analyses due to lack of 

replication. 

It is shown in Appendix B that a set of constants are 

equivalent to the time constants . Çp and therefore t^, 

was found to be significant at the 1 percent level in compres­

sion. The complete set of for all compression tests is 

tabulated in Table 2. It is apparent that the values for the 

20 percent stress levels are markedly lower than at any other 

stress level. In tension was not significantly different 

between stress levels. The average values of Çj_-: and the F-

values, are given in Table 3. 
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Table 1. Ratios t^/r^ for checking validity of use of 

recovery data 

Tension Compression 
Specimen *1 

(hours) 
ti/Ti ia Specimen tl 

(hours) 
VTi 

T-l-3 1871 60.0 1 C  — 1 — R s p  2014 11.6 
84.1 2 314.6 

T-l-2 1657 9.5 1 0-2-1 2152 120.2 
45.2 2 164.3 

T-l-1 1867 22.0 1 0—1—2 1990 199.0 
121.4 2 239.8 

T-3-l-Rep 1795 68-2 1 0-1-3 1656 14.4 
371.8 2 80.4 

T-3-3 1678 13.6 1 0-2-3 2059 22.1 
71.2 2 92. y 

T-2-1 1845 35.3 1 0-1-1 2153 11.0 
52.1 2 129.7 

T-2-2 1658 7.6 1 0-2-2 1681 15.1 
123.8 2 27.2 

T-2-3 1870 16.4 1 0-4-3 1846 18.6 
161.8 2 95.2 

T-4-3 1677 18.4 1 0-3-3 1845 16.8 
160.9 2 121.4 

T-3-2 2507 12.3 1 0-3—2 1655 9.9 
142.2 2 140.2 

T-4-2 1796 19.7 1 0-4-2 169 1.6 
101.9 2 14.2 

T-4-1 1704 7.7 1 
145.0 2 

aIn fitting expression la to the data, n was taken to be 
2, so that i takes on the successive values 1, 2. 
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Table 2. Time constants for compression tests 

Repli­
cation 

Stress level (percent) 
Repli­
cation 10 20 30 4o 50 60 80 

1 0.9443 0.5726 0.9170 0.9498 0.9041 0. 9418 0.9096 

2 0.3696 0.9071 0.9141 0.9131 

aTo obtain the time constant Ç, time is measured in tens 
of hours. 

It was not possible to test the second time constant, 

because it often had a negative value. Details of the dif­

ficulties encountered are given in Appendix B. Table 4 gives 

the magnitudes of obtained. It can be seen in Table 4 that 

considerable variation exists in among and within stress 

levels. 

The delayed equilibrium elastic compliance De-Dg was 

tested. The average values are given in Table 3, along with 

F-ratios, and corresponding critical values of F. 

3. Flow compliance 

According to expression 8» irrecoverable strain, or flow, 

can be obtained by subtracting recovery strains from creep 

strains at any choice of times, subject again to the restric­

tion that t]/Tj_ » 1. If 8 is divided by a, an expression for 



Table 3. Average constants and F-ratios 

Tension Compression 

Level ofb c Level of 
Average value F significance Average value F significance 

(percent) (percent) 

Gl 0.888 0.60 >20 0.806 18-7 <1 

De - Dgd 2.978 1.34 >20 3.108 3.57 >10 

aThe ratio has 4 and 5 degrees of freedom. 

^The level of significance is the probability of obtaining by chance a suf­
ficiently large calculated F to reject the hypothesis when, in fact, the hypothesis 
is true. 

cThe ratio has 3 and 4 degrees of freedom. 

^These constants have units 10"^ in.2/lb. 
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Table 4. Time constants £2a obtained from Prony1 s method 

Stress level Tension Compression 
(percent) 

10 -0,6380 -0.2105 

20 0,7613 -0.4656 
-0.5221 -0.2995 

30 0.1265 0.6158 
-0.6540 -0.6369 

40 -0.7536 0.5475 
-0.4743 0.3129 

50 -0.4208 -0.5984 
0.3835 0.5177 

60 0.5668 0.4294 
-0.5670 

80 0.4270 0.4334 

aThe constants have units g^/tens of hours^ 

Dj.( t), the flow compliance is obtained. 

A curve was drawn through the data points for creep in 

each experiment. Figure 12 shows such a curve for specimen 

0-2-1, a typical creep compliance curve. At intervals ranging 

from 10 hours to 200 hours, the ordinates of the corresponding 

recovery curve obtained by Prony's method were subtracted from 

the creep compliance curve. The lower curve in Figure 12 is 

an example of a flow compliance curve obtained by subtraction. 

Now it is apparent that flow here is not linear in time, as 
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Figure 12. A representative creep compliance curve and computed flow 
compliance curve 
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given in 1. However, it was found that if the flow curves 

were plotted on logarithmic paper, in many instances they 

plotted as essentially straight lines. Figure 13 shows such 

a plot, again for specimen 0-2-1, Then, apparently, at least 

within the time range of these experiments, flow can be ex­

pressed in the form 

In compression, 9 appeared to fit the flow quite well, 

particularly at the higher stress levels. In tension, much 

of the flow data was very erratic, and showed no trend of any 

kind. Where the tension data were reasonably consistent, 9 

seemed to fit adequately. The constants for compression were 

tested in the same statistical fashion as before. The results 

are given in Table 5. No statistical test could be performed 

on the tension flow data, because the few results that were 

reasonably well-behaved did not provide sufficient replication. 

The flow curves obtained by using average constants are 

plotted in Figure 14. 

If la is substituted into 4, the transform manipulations 

that will, in theory, permit solution for E(t) are unknown. 

However, MacLeod (34) has suggested that if the logarithmic 

plot of Dj.(t) versus t is a straight line, at least for speci­

fied ranges of t, then approximately 

Dj,(t) = at 
b 

(9) 

DE(t) = atb (10) 
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Table 5. Average constants and F-ratios for flow compliance 

Tension Compression 
Constant Level of 

Average value3. Average F significance 
value*5 (percent) 

ad 0.444 1.040 0.73 >20 

be 0.541 0.520 0.40 >20 

aBased on 1 test at 30, 40 and 50 percent of ultimate 
strength, and 2 tests at 60 percent. 

^Based on tests at 20, 30, 40, and 50 percent of ulti­
mate strength. 

cThe ratio has 3 and 4 degrees of freedom. 

dThe constant a has units of 10"^ in.^/lb, 

GThe constant b is dimensionless. t is measured in tens 
of hours. 

The transforms are established for 10, and yield 

= M (11) 

Here b is the slope of the logarithmic plot. It is obvious 

that when Djj(t) approaches its asymptote, b approaches zero, 

so that for all very long times the relaxation modulus and 

elastic compliance functions are reciprocals. 

Figure 15 shows the logarithmic plot of the compression 

recovery data. It appears that three straight lines describe 

the behavior quite well above ten hours. Figure 16 is a plot 
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of E(t) obtained from Figure 15. It appears that very little 

error would be introduced if it was assumed that E(t) and 

DE(t) are reciprocals. 



V. DISCUSSION 

The glass compliance appears to be quite independent of 

stress level, on the basis of the regression plotted in Figure 

11. The plotted averages indicate a straight line relation­

ship between strain and stress, even at stresses as high as 

80 percent of the estimated strength. There appears to be 

very little difference between glass compliance in tension and 

compression. It would be possible to perform a statistical 

test for congruence of the two lines in Figure 11. This was 

not done. It was felt that the method of obtaining instanta­

neous strains permitted a large amount of variation, so that 

it would be difficult to show a significant difference between 

the two lines even if a difference did exist. However, when 

determining modulus of elasticity for a single species in a 

standard test, coefficients of variation of greater than 20 

percent are not uncommon. In the face of such large variation 

in a relatively heterogeneous material, it seems quite practi­

cal to assume that there is no difference between the two 

lines as shown. Then it is possible to pool the data for a 

new estimate of the glass compliance. In this case, Dg = 6.4-0 

x 10"6 square inches per pound for tension and compression. 

The requirement that t]_/r^ » 1 was met for all but the 

80 percent stress level in compression. For That case it was 

necessary to stop the test in a very short time because the 



62 

range of the strain gage was too short. It can readily be 

shown that if the ratio tj_Ai is seven or greater, there is 

no theoretical error to four significant digits in using re­

covery data to approximate elastic compliance. In this exper­

iment several of the ratios turned out to be just a little 

greater than seven. It does not necessarily follow that these 

tests were conducted for the length of time necessary to meet 

the requirement. Expression 1 has no unique set of constants 

for a given set of test data. A unique set of constants is 

acquired only under some fixed criterion for establishing 

those constants. In this case, the criterion was Prony's 

method, If a different method had been devised, the set of 

ratios in Table 1 would likely have been quite different. It 

does appear, on the basis of this experiment, that for oak at 

80 degrees Fahrenheit and 12 percent moisture content, and 

where Prony's method will be used, about 1600 hours of creep 

testing prior to a creep recovery experiment are needed. 

It is not clear why the time constant ¥as markedly 

different at the 20 percent stress level in compression than 

elsewhere. It may involve some mechanism undergoing change 

in the material, or it may involve undetected experimental 

difficulty. Certainly there is a need for further experi­

mentation in that region of stress. 

The usual interpretation of the time constants is that 

they represent mechanisms in the material which prevent the 
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elastic strain from occurring entirely instantaneously. A 

material will, in general, have an infinity of such mechanisms 

continuously distributed. If a finite set of terms such as 

expression 1 is used to describe the behavior, the distribu­

tion is approximated by a set of lumped constants. The T'S 

are time constants associated with the attenuation of contribu­

tions to compliance. The contributions to compliance are the 

corresponding D's. When the t becomes about seven times 

larger than a particular r, the corresponding D is no longer 

attenuated and contributes fully to total compliance. Thus a 

relatively small r is called a "fast" retardation time, be­

cause only a short time is required for the attenuation to 

vanish. 

It is not possible, within the concepts above, to explain 

the physical meaning of the negative time constants p>, or {. 

In every case, the negative value was associated with the 

smaller of the two retardation times. It seems probable that 

the negative values are associated with scatter in the data, 

and the inadequacy of the fit by eye of the creep recovery 

data. This may cause particular difficulty in the early part 

of the recovery experiment, when the retarded elastic strains 

are small, and the faster retardation constant is in the 

process of becoming established. 

On the basis of this experiment, there is an indication 

that the delayed elastic behavior is described by a linear 
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stress-strain relation. It may also be observed in Table 3 

that the slow time constant, and the delayed elastic compliance 

have about the same magnitude in tension and compression. It 

should be pointed out that the variation in the results was 

large. The inability to find a significant difference in the 

constants between stress levels may be because no difference 

existed, or it may be because the experiment was not suffi­

ciently precise. 

Plow compliance was found by subtracting the regression 

estimate of glass compliance and the Prony estimate of delayed 

elastic compliance from creep compliance. This estimate of 

flow then is a catchall for all the accumulated error in the 

preceding estimates. It is not surprising that it was erratic 

in some cases. Expression 9 functioned quite well in fitting 

the compression data. There appears to be very little proba­

bility that flow compliance is dependent upon stress level. 

This is not in accord with the results reported by Youngs (see 

Figure 5). On the basis of the limited results in this study, 

flow may be twice as great in compression as tension at equi­

valent times. The results of work by Youngs (59) indicated 

that creep is greater in tension than compression for red oak. 

These findings conflict with the results of this study. For 

it is indicated here that the elastic components of creep are 

about the same in tension and compression, and flow is much 

greater in compression. Youngs indicates his results are 
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suspect due to experimental difficulties. 

It is of interest to note the relative magnitudes of the 

components of compliance in a general sort of way. Equilib­

rium retarded elastic compliance is about half that of glass 

compliance. It is not possible to compare flow compliance 

unless a specific time is mentioned, because it appears never 

to reach an equilibrium value. Using the average flow curves 

of Figure 14, flow compliance in compression is about equal to 

the equilibrium elastic compliance at 650 hours. The tensile 

flow compliance is about half as much at the same time. 

Because some time constants were negative, it was not 

possible to find an average delayed elastic compliance curve, 

as it was for flow compliance. It is possible, however, to 

average the ordinates of the recovery curves at a selected set 

of times and obtain an average curve. This should only be 

done if it appears certain that all recovery curves are esti­

mates of the same delayed elastic behavior. 

If Prony's method for fitting recovery data is to be used, 

some suggestions can be recommended on the basis of this ex­

periment. It is desirable to perform the computations using 

ordinate values for the same equally spaced values of the 

abscissa. It is particularly desirable to use a great many 

points if the compliance reaches equilibrium rather rapidly; 

that is, if all retardation times are relatively "fast". 

Probably increments of ten hours are sufficient. This will 
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cause need for large numbers of computations. However, the 

entire method seems amenable to digital computer solution. 

A strain detecting device that will drive a recorder 

would be of great value. The human error in performing a 

curve fit by eye would be removed if recording could be done 

automatically at the desired increments of time. If there is 

a fast retardation time associated with the first few hours, 

it would be helpful to record continuously during that time. 

This may also make it simpler to detect the strain at the 

instant the load is applied. Greater resolution is needed in 

the strain gage if variation is to be reduced. Although oak 

is one of the stiffer woods, it can be expected that it will 

exhibit greater stiffness in the other two principal direc­

tions. Thus, to reduce errors, it would be desirable to in­

crease the sensitivity of the gages by at least a factor of 

ten. 

It is indicated that the duration of the creep experiment 

should be about 1600 hours, prior to creep recovery. This may 

differ for other species, for other directions in oak, at 

other temperature and equilibrium moisture content conditions, 

and for a more precise experiment. It is unlikely that large 

sample sizes can ever be used in experiments which are so 

expensive in terms of time and equipment. It is not possible 

to predict a good sample size on the basis of this study, be­

cause it is felt that much of the variation can be reduced by 
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improving upon the experimental method. It is probable that a 

refined experiment along the same lines as this one could give 

a good indication of necessary sample size. 

There are a great many closely related problems of 

interest. If flow is capable of being described by Equation 

9> then it becomes infinite as time becomes infinite. In 

tension this probably indicates destructive failure of the 

specimen. In compression, it hints of continuous densifica-

tion of the material. This seems an unlikely consequence. 

Thus the entire realm of very long times warrants exploration. 

Expressions 4 and 11 indicate relaxation behavior can be com­

puted if creep behavior is known. However, this can only be 

finally proven by experiment. Also, the role of flow in the 

relation between creep and relaxation is not entirely clear. 

Eventually the effect of varying temperature and moisture con­

ditions must be studied, as well as the effect of chemical 

treatments the wood may undergo. A scheme for accelerated 

testing could be of great importance in establishing rhéologie 

properties for a variety of species and conditions. In a 

somewhat more mathematical vein, the effect of combined 

stresses might well be considered. 
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VI. SUMMARY AND CONCLUSIONS 

This research was done to develop a means for describing 

the perpendicular-to-grain rhéologie behavior of wood in direct 

stress. Twenty-three red oak specimens were tested under con­

stant load and the strain-time behavior observed. Tests were 

conducted in tension and compression perpendicular to a 

longitudinal-radial plane, and at 10, 20, 30, 40, 50, 60 and 

80 percent of the estimated static ultimate strength. Strains 

were measured to the nearest 100 micro-inches per inch. The 

tests were conducted under controlled conditions of 80 degrees 

Fahrenheit and an equilibrium moisture content of 12 percent. 

The duration of the tests was about 10 weeks of creep and 4 

weeks of creep recovery. 

The creep compliance was described by the function 

D(t) = D„ + £ D, (1 - e~t//Tl) + atb 
s i=l 

The first term on the righthand side of the equation repre­

sents the instantaneous elastic effect, the second and third 

terms represent the delayed elastic component, and the fourth 

term was used to describe the irrecoverable effect. All terms 

were found to be independent of stress level. The elastic 

effects were of the same magnitude in tension and compression. 

Flow compliance was twice as large in compression as tension 

at any time. In general, glass compliance was about twice 
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equilibrium retarded elastic compliance. Average flow in 

compression was equal to glass compliance at about 650 hours. 

The experiment consisted of two replications in order to 

obtain some small measure of the variation involved. Varia­

tion was found to be quite large. This is usually to be 

anticipated with a relatively heterogeneous material such as 

wood. It is suspected that some of the variation can be re­

moved by refinements in the experiment. The delayed elastic 

portion of the function was fit to recovery data using Prony's 

method. The fast retardation time often was slightly negative, 

which is physically absurd. This was accredited to inaccura­

cies in the experiment and the fitting technique in the very 

early times. 

On the basis of this work, it appears that red oak be­

haves as a viscoelastic material which is linear in stress and 

strain perpendicular to the plane considered, at least up to 

60 percent of the static ultimate strength. This should make 

it possible to describe elastic behavior, creep, creep recov­

ery and stress relaxation all within the framework of a single 

mathematical theory. The few terms of the creep compliance 

function are quite simple. 

It is desirable to develop improved experimental and 

computational techniques to reduce variation. Considerable 

additional information is needed on the nature of flow. 
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IX. APPENDIX A 

A. List of Symbols 

Wherever pertinent, the symbols used are those recom­

mended by the Society of Rheology (31). 

a, b, c = constants 

Dg = glass compliance 

D(t) = creep compliance function 

Dg(t) = elastic compliance 

De(t) = equilibrium elastic compliance 

D^(t) = delayed elastic compliance 

D^(t) = flow compliance 

Dj_ = compliance constants 

Eg = glass modulus 

E(t) = relaxation modulus function 

= modulus constants 

k = general compliance variable 

m = general modulus variable 

p = Laplace transform parameter 

t = time 

u = dummy time variable 

e = unit strain 

0 = unit stress 

T( = flow constant 

Ti = retardation and relaxation constants 
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X. APPENDIX B 

A. Pitting the Elastic Compliance Function 

It is desired to fit the elastic compliance function 

DE(t) = D + Ë Di(l - e"^ri) (1) 
6 i=l 

to creep recovery data, and to compare the constants D^ and 

t^ for specimens tested at the same stress level, and for 

2 
specimens tested at different stress levels. Dg is assumed 

known. Values of D-g(t) are available from experiment over a 

range of t. The method for obtaining the constants in 1 is 

called Prony's method. It is described by Hildebrand (18). 

Let 1 be written in the form 

n + 
f(t) = E D1y-1 (2) 

1=1 

Then the following transformation equations hold 

n 
f(t) = Dg + E Di - DE(t) 

i-i (3) 

P-1 = e-1/1-! 

Note that the first of 3 is simply the equilibrium elastic 

compliance minus the experimental data. 

2The numbering system for equations here is independent 
of that used in the text. 
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Let f(t) be obtained from the data at H equally spaced 

points t = 0, 1, 2, •••, N-l. Then, for 2 to hold at these 

values of t, the following set must be satisfied. 

Djl + Dg + ••• + Dn = f(0) 

Dlpl + D2U2 + = f(l) (4) 

Vl"1 + v"'1 + "" + Vu"1 = f(N-l) 

This set is solvable for the D's in terms of the P>'s by least 

squares if N > n. 

Now, let V'-^,V>2> ' ' ' >^n 'tiie roots of 

Un - - a2P.n"2 - • • • - an-1u - an = o (5) 

Hildebrand shows that the a1s must then satisfy the set 

f (n-l) + f (n-2) cip + ••• + f(0)an = f (n) 

f(n)ct1 + f(n-l)&2 + - • = + f ( 1 ) ̂  = f(n+l) (6) 

f (N-2) ctj. + f(N-3)a2 + ' ' ' + f (N-n-1) ctn = f (N-l) 

The set 6 is solvable for the a's by least squares if N > 2n. 

In this study, n was taken to be two. This seemed to 

yield a fair fit to the experimental data. Several values of 

N were employed, depending on how well behaved the data ap­

peared. N was usually about 10. Actual times were coded by 

dividing by a suitable constant so that t took on the succès-
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sive integral values 0, 1, 2, N-l. Ehe time increment 

was chosen so that f(N-l) corresponded to the equilibrium 

elastic compliance. A curve was drawn by eye through the 

plotted experimental data. Ordinates were taken from this 

curve, and f(t) computed with the use of 3. 

The set 6 was solved for the a1s by least squares. The 

roots of 5 were then determined from the quadratic formula. 

Here the advantage in taking n no greater than two becomes 

apparent. For if n = 3, 5 is a cubic equation which is some­

what difficult to solve. As n takes on larger values, 5 be­

comes increasingly more difficult to solve for the roots. 

After the P-' s were established, the set 4 was solved for the 

D's by least squares. Figure 17 shows some recovery data, and 

a plot of the curve established by the method described. 

It is expected that the are positive real constants. 

However, when fitting 2 to the data, in some cases a was 

real and negative. Then the term 1*^ is real only when t is an 

integer. Hildebrand suggests that a suitable interpolating 

function which is real for all values of t is given by 

I* cos TCt 

or (7) 

t InlP-i I 
e 1 x 1 cos 7ft 

If constants are to be compared statistically within and 

between stress levels, it is not necessary that the ti actually 
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Figure ly. Experimental recovery data, with curve fit by Prony's method 
with n = 2 
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be found. It is sufficient to compare the constants p^. It 

is necessary, however, that the P^ to be compared all be based 

on the same units of time. If I represents time in hours, 

then a scale factor m may be chosen in 2 so that 

t = mT 

4 = nf (8) 

It was mentioned previously that t must take on integral 

values, thus fixing the nature of m. Now it may be desirable 

to express 2 in terms of some other time interval, call it nT. 

Then it is required that 

or (9) 

i, -

Expression 9 makes it possible to find constants based on 

a single time interval for purposes of comparison, even if 

several different scale factors were used in fitting the 

several curves with 2. This is only possible, however, for 

the case where the P^ are all real and positive. If some 

value of P- is real and negative, then the term containing it 

undergoes a sign change each time t changes by unity. Figure 

18 shows the sort of behavior that describes such a term. It 

is absurd to make any comparison of a real positive P- with a 

real and negative P>, because the nature of their contribution 

to compliance is entirely different. 
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Figure 18» Behavior of a single normalized term of the 
elastic compliance function 


