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INTRODUCTION 

Since the discovery that green plants assimilate carbon 

in the presence of light, physiologists and ecologists have 

recognized light as one of the most important factors in plant 

growth. To date, most research involving the effects of light 

on plants has been conducted in standard glass structures and 

detailed radiation studies have been accomplished with light 

from artificial sources. 

The use of controlled environments specifically designed 

to examine various plant growth responses (17, 34, 72) has led 

to renewed investigations involving light and plant growth. 

The advent of fiberglass reinforced plastic (FRP) panels for 

greenhouse coverings, has made it necessary to use the light 

transmission potential of this material as a foundation for 

controlling plant environment using insolation as the main 

source of light energy. 

Plant growth is improved when all wave lengths of the visi­

ble spectrum are available and in some cases it has been shown 

that only energy directly from sunlight provides the best 

plant growth (49, 52). Under laboratory conditions photo-

synthetic activity is greatest when specific wave lengths of 

red and blue are available (12, 14). 

Little work has been done to determine why plants respond 

so well to full sunlight. This investigation was designed to 
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evaluate plant response to insolation in terms of wave length 

intensity ratios and radiant energy transmission by flat glass 

and corrugated fiberglass reinforced thermosetting plastic 

panels. 
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OBJECTIVE 

The objective of this investigation is to determine the 

growth response of plants to heat and light quality and quan­

tity transmitted through colored and noncolored fiberglass 

reinforced thermosetting polyester resin panels. 

The investigation was divided into two parts: 

Part ̂  A preliminary study to determine some of 

the plant environmental characteristics created by coverings 

of FRP frost white, clear and super clear panels, and glass. 

Part II The evaluation of plant growth under the 

lowest possible amount of insolation transmitted by tinted 

panels of FRP with transmission characteristics in the violet, 

blue, pink and red regions of the visible spectrum. 
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REVIEW OF LITERATURE 

Coverings for Plant Growth 

Historians do not document the exact inception of growing 

plants under cover, but Lemmon (38) recorded the writings of 

Plato, who in the fourth century B.C. indicated in his 

Phaedon that plants were grown under protection. Lemmon also 

noted that Sir Joseph Banks mentioned the forcing of dessert 

fruit in Roman times under thin sheets of mica called "muscovy 

glass" (lapis specularis). One of the first references of 

glass use was in 1385 in the Bois de Duc in France, where they 

grew flowers in glass pavilions facing south (38). 

Glass 

Flat glass During the past six centuries, glass has 

been the main transparent medium used to provide natural light 

in protected environments for plant growth. Through the early 

seventeenth century arguments and theories about covered garden 

buildings were common. The first greenhouse building material 

to come under the closest scrutiny was glass. For several 

hundred years, only two types of glass had been used. One was 

Broad glass which was made by dipping a metal cylinder in mol­

ten glass, then stripping off the glass and ironing it out. 

Broad glass tended to be uneven in thickness, and was usually 

streaked. The second type. Crown glass, was made by spinning 
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a circle at the end of a glass blower's pipe.- It had a green­

ish cast and was favored by gardeners (38). 

By 1883, sheet glass was being produced. It was said of 

the garden house . . » "one of the greatest improvements made 

in their construction since the substitution of roofs of glass 

for those of opaque material (38)Most glass used at the 

turn of the nineteenth century was of good quality sheets 

weighing from 21 to 24 ounces per square foot. Some trans­

lucent corrugated sheet glass and unpolished plate-glass had 

been tried for plant covers, but was generally found unsuitable 

because of insufficient light during dull weather (46). 

Glass used in the construction of plant covers today is 

still largely soda-lime-silica glass. For many years the 

Federal Government has maintained specifications for all types 

of glass. The following requirements for greenhouse glass are 

taken from the latest specifications (70). 

designation; Double strength, having a minimum and maxi­
mum thickness of 0.115 and 0.134 inches respectively. 

cut size: The length and width cut size tolerance is 
1/32 inches. 

quality: Glass may contain defects of any size or 
intensity, but shall contain no stones which may cause 
spontaneous breakage. 

sheet: Greenhouse quality, intended for use in greenhouse 
glazing or similar applications where quality is 
unimportant. 

The definition of sheet glass in the Federal specification is: 

"Transparent, flat glass having glossy, fire-finished. 
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apparently plane and smooth surfaces, but having a character­

istic waviness of surface." 

Fiberglass "Fibrous glass," more recently known as 

fiberglass was used in a coarse form by Egyptians before the 

time of Christ. The Columbian Exposition of 1893 featured 

glass fiber clothing and the Germans, during World War I, were 

unable to obtain asbestos and turned to fibrous glass as a 

substitute (51). 

It was not until 1931 that fiberglass was first marketed 

in the United States and consisted of such items as insulation, 

reinforcing mats, and thread (50). Mats of fiberglass, made 

from low alkali lime soda borosilicate, were generally used for 

plastic-mat lamination. When molten glass is passed through 

spinnerets with high pressure steam, fibers form and are depos­

ited on a conveyor belt in a web-like mat. The mat is then 

coated with a binder, oven dried, and ready for lamination (26). 

Plastics 

There are many plastic resins used in the industry 

today. Most of these resins have been classified into two 

categories, thermosetting and thermoplastic. Thermosetting 

resins are those materials that undergo a chemical polymeriza­

tion reaction or "cure" upon initial heating. Reheating does 

not reverse the process or change the physical condition. 

Thermoplastic materials when reheated merely change physical 

condition and become soft and hard when cooled (66). 
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The earliest known thermosetting plastic — a phenol 

formaldehyde resin called "Bakelite" was developed in 1909. 

The first thermoplastic, cellulose nitrate, given the trade 

name "celluloid" was discovered in 1868. Because of the highly 

flammable characteristics of cellulose nitrate it was not 

marketed and in the 1930's cellulose acetate was introduced 

(11) . 

Film materials The first flexible film, a thermo­

plastic material was developed by British chemists, Faucett 

and Gibson in 1933. The first ton of the film, called poly­

ethylene, was produced in England in 1938. However, produc­

tion did not start in the United States until 1943 (11) . The 

earliest known use of polyethylene film for plant protection 

and growth in the United States was suggested by Emmert (15) 

in 1954. Other films often used for plant coverings include 

polyvinyl, Mylar^ (a polyester), Kodapak (a cellulose), and 

polystyrene (69). Japan uses a large amount of polyvinyl 

chloride film for plant covers. The film was introduced in 

approximately 1951 and now comprises almost 70% of all cover­

ings used in Japan (53). 

Rigid materials During the past decade rigid plastic 

coverings for plant production have been well received because 

they provided adequate light transmission, decreased building 

^Trade names 
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costs and facilitated rapid construction. In general, the 

following three plastic products compose the major materials. 

Plexiglas The most transparent rigid plastic 

produced is an acrylic monomer called Plexiglas. Acrylic 

monomers were reported as early as 1843, but it was not until 

1901 that Dr. Rohm of Germany reported on acrylic materials 

and in 1927 directed the first commercial manufacture of the 

resin (3, 20, 41, 48). 

Polyvinyl Chloride (PVC) Rigid PVC panel produc­

tion began in the United States around 1959. However a light-

stable product for greenhouse glazing could not be produced. 

The Japanese produced a panel for export in the late 1950's, 

but it proved to be light sensitive and turned "yellow" within 

18-24 months. At this time, the only apparently light-stable 

PVC being utilized in the United States for plant protection 

is that produced by the Hishi Nami Company of Japan. 

Fiberglass Reinforced Plastic Panels (FRP) The 

first known FRP panels in the United States were produced in 

approximately 1947. These translucent thermosetting panels 

were mainly used as skylites in corrugated metal buildings. 

The panels were basically composed of polyester resin, cata­

lyst, filler, and glass mat (64). After approximately two 

years exposure to nature's elements, the panel started eroding, 

exposing the glass fibers. 
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By the mid I960's the FRP panel had been improved with 

the addition of an acrylic monomer. Figure 1 shows a general­

ized flow diagram of materials for the present day production 

of glass reinforced plastic panels (3, 18, 47). New formula­

tions have improved the FRP panel providing increased weather-

ability, transmission stability and longevity. 

One of the earliest evaluations of FRP as a cover for 

plant growth was by Holley (31) in 1956. In 1958 Carpenter 

(9) built a greenhouse structure of wood and FRP for plant 

growth evaluations. In the summer of 1959, Briggs (6) com­

pared the growth of carnations under glass, several plastic 

films and FRP. From 1958 to 1960, White (73) evaluated the 

growth response of several plant species grown under clear FRP. 

Work at Colorado State University in 1966 (32) indicated that 

the frost type fiberglass yielded greater growth than clear 

FRP, PVC panels or glass. All research to date indicates that 

plants grown under translucent FRP panels are equal to or 

superior to those grown under glass. 

Inferences are often made regarding the superior growth 

of plants achieved under polyethylene compared to other plas­

tics. Two recent investigations (10, 60) indicated no sig­

nificant differences in the yield or quality of tomatoes grown 

under four types of plastic, including FRP. 
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Cover Transmission Qualities 

An early account of heat transmission through a glass and 

its effect on plant growth was demonstrated when the Kew 

Garden palm house was constructed in approximately 1833 (38, 

39). The intense light passing through the glass was assumed 

to cause a "burning" on the palm leaves and a pale yellowish 

green tinted glass was recommended and was manufactured to 

decrease heat transmission. The theory may have been correct, 

but the tinted glass was later replaced with colorless glass. 

Brigg's studies (6) demonstrated significant differences 

in the heat transmission of a clear FRP and glass. Using an 

Epply pyrheliometer as a means of comparison, clear FRP trans­

mitted 12 percent less solar energy than glass. Others (28, 

73) also found that light was reduced on sunny days under FRP 

when compared to glass. Later research by Aldrich et (1) 

indicated that a glass house transmitted approximately 24 

percent less energy than a house covered with FRP. The study 

by Briggs was conducted in an identical time of year and 

appears to be in direct conflict to that of Aldrich. 

Goldsberry (23) showed that the spectral transmission 

characteristics of new glass, standard glass 12 and 43 years 

old and one quarter inch glass 43 years old were not signifi­

cantly different within the visible portion of the spectrum. 

Researchers in England (69) concluded that radiation 
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transmission and heat conserving properties of ten plastic 

films were not superior to glass. 

Studies conducted in Ames, Iowa (24) showed that spectral 

transmission characteristics of FRP were controlled by the 

degree of translucence and color of the materials. The great­

est transmission differences, in relation to the total insola­

tion, occurred in the lower end of the visible spectrum. All 

clear plastic materials had comparable transmission curves and 

were aligned almost midway between curves of new glass and 

coral FRP in the visible portion of the spectrum. 

Plant Responses to Light Quality 

Researchers have demonstrated the importance of the light 

spectrum reaching a particular plant environment and have 

often indicated that continued study and application were long 

overdue (2, 24, 36). 

The research of Mr. R. Hunt, involving light quality and 

its effect on plant growth and his presentation of data to the 

British Research Association in approximately 1844 is described 

by Lemmon (38). The data presented in his paper showed that 

the "natural conditions" of plants could be altered by red, 

blue and yellow light. Yellow light prevented seed germination 

and in most cases young plants died. Light transmitted through 

a red medium was not unfavorable to seed germination but plants 

were elongated- Blue light accelerated the germination of seed 
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and caused rapid, weak growth of young plants and when they 

were given yellow-green light, plant growth improved. 

During the same year. Dr. Horner of Hull, England experi­

mented with glass for greenhouse purposes and recommended 

violet-colored glass (38). The following sentence provides an 

insight to his thinking. 

"As not only affording partial shade but as 
transmitting a light which possesses a subtle action 
in exciting vegetation and proving in all respects 
an admirable auxilary to heat and moisture neces­
sarily employed in culture." 

His recommendations were not heeded. 

Light transmitted through colored coverings 

Aside from the unsuccessful use of green tinted glass on 

the Palm house in Kew Gardens (38, 39), many researchers have 

studied the effects of colored coverings on plant growth. 

Schanz (61) covered eight beds with various colored glass, 

transmitting decreased quantities of blue-violet light. Maxi­

mum plant height of soybeans, potatoes, red beets, and beans 

was obtained under red light and minimum height under blue-

violet. In general Schanz concluded that short wave lengths, 

particularly UV, are detrimental to plant growth. For green­

houses he recommended Euphos glass which prevents the trans­

mission of UV rays. 

Popp (52) compared the growth of plants receiving un-

obscured solar radiation to those grown under glass coverings 



14 

transmitting various amounts of violet and blue light. He 

noted little difference in plants grown without UV and those 

grown in full sunlight, but when wave lengths shorter than 

529 mu were removed, poor growth occurred, stems were weak 

and fresh and dry weights were lower. 

Anatomical studies of plants grown under Corning glasses 

transmitting five types of light (49) yielded results compara­

ble to those of Popp. Cross sections of Biloxi soybean were 

similar for full spectrum and outdoor grown plants. In gen­

eral, the stem diameters of all plant species studied were 

smallest under red and blue light. Stem height was least under 

blue and greatest under red light. Leaves were thinnest under 

red with blue light next. Pfeiffer (49) indicated that the 

full solar spectrum provided better development than any modi­

fied spectrum as demonstrated by more differentiation, greater 

height, increased stem and leaf thickness and root systems of 

plants studied. 

One of the earlier reviews concerning the effects of 

light on the physiological processes of plants was by 

Burkholder (7). Because of his excellent review, additional 

evaluations of work prior to 1936 will not be presented here. 

Briggs (6), compared carnations grown under seven colors 

of FRP corrugated panels to those grown under glass and noted 

that significantly more dry matter was produced under the 

clear, coral, amber, jade and frost colors than under glass. 
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The lavender and yellow FRP coverings yielded less dry weight 

than did glass. Growth of carnation plants under clear fiber­

glass was also superior to growth obtained under glass or 

coral FRP. The percentage of blue light transmitted by the 

coral FRP was less than half of the red light transmitted 

(24) . 

Effects of artificial light 

Evaluations of colored artificial light on plant growth 

appears to substantiate the experimental results with natural 

light and colored coverings. 

Dunn and Went (14) compared dry weights of tomato plants 

grown under combinations of blue, green, gold, pink and red 

fluorescent lights. Plants grown under blue and red light 

provided the most dry weight and the green and yellow light 

reduced photosynthesis. Other experiments involved combina­

tions of blue, red, warm white and green light. The combina­

tion red and blue light provided the greatest plant growth 

and the photosynthetic efficiency was as high as the effi­

ciency under separate blue or red lights. Dunn and Bernier 

(13) indicated that the Gro-Lux fluorescent lamps provide 

"proper" balance of the light spectrum and are comparable to 

solar radiation. 

Van der Veen and Meijer (71) showed that the effects of 

red and blue light intensity on stem elongation could be 
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reversed. At low light intensities blue light is always less 

active than red, at higher intensities the reverse is true. 

Photosynthesis 

Since 1882 when Engelmann (16) found that two peaks of 

effectiveness in the light spectrum^ 400 and 600 mn were 

responsible for photosynthetic activation, many researchers 

have verified his data. A reference frequently cited is Hoover 

(33) who determined the photo synthetic spectral requirements 

for young wheat plants. He found that maximum CO g absorption 

occurred at peaks of 440 and 655 my. He also noted increased 

reflection and transmission of radiation in the green region 

by plant leaves diminishes the effectiveness of photosynthetic 

activity. Loomis (43) and others (54, 63) have shown absorp­

tion spectra of the intact leaf to be different from that of 

chlorophyll in ether or water. Loomis found that the absorp­

tion spectrum of approximately 90 plant species peaked between 

450 and 500 mp and again near 700 my. M. Horamersand and 

F. Haxo (Ray (57)) observed two peaks in the photosynthetic 

action spectrum of Elodea densa leaves. The highest peak was 

at approximately 435 and the lower peak at 670 mp. Machlis 

and Torrey (44) studying photosynthetic processes also found 

two peaks of activity, one in the blue range between 400 and 

450 my, the other in the red range around 650 to 670 my. 
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The photosynthetic activity of several algae are also 

effected by light quality. Levring (40) studied the effects 

of ocean depth on algae activity. He showed that the photo-

synthetic activity of Enteromorpha clathrata decreased with 

depth. At the 0.5 meter depth, an action range in blue 

(near 440 mu) and red (645-660 mu) were predominate. In­

creases in depth decreased both peak areas and at 20 meters, 

no action peaks were visible graphically. 

Terborgh et (68) studied the low effects of light on 

growth and pigment content of Chlamydomonas reinhardi and 

showed peaks of effectiveness between 462 and 502 my, a region 

in which carotenoids absorb strongly, and between 700 and 736 

my where long wave length forms of chlorophyll a are known to 

absorb. 

Krey and Govindjee (3 7) report that a major band at 

693 my appears when the fluorescence of porphyridium is ex­

cited by high intensities of green light when compared to the 

same cells given low intensity green light. Minor positive 

(669 my) and negative (660 my) bands also appear. It is sug­

gested that a shift of fluorescence of phycocyanin caused the 

changes. 

Pigment formation and absorption 

The wave lengths of the light spectrum most active in 

photosynthesis are essentially the most effective in 
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chlorophyll formation. Sayre (59) found that no chlorophyll 

developed in plants that were radiated only with wave lengths 

longer than 680 m#. Frank (19) found that blue and red light 

are highly effective for chlorophyll absorption but blue at 

440 mu is dominant. Livingston (42) noted absorption peaks 

of 435 and 667 mu in chlorophyll and in chlorophyll b, 472 

and 660 mu- Jagendorf (35) presented a table relating the 

peak absorption wave lengths for various photosynthetic pig­

ments in green plants. Chlorophyll a, b, and c ranged from 

640 to 673 mu. Beta-carotene, 482 mu, fucoxanthin, 470 mu and 

phycoerythrin, 566 mu. French (21) presented a cOTiplete ab­

sorption spectrum of chlorophylls a and b in ether. Chloro­

phyll a peaked at 430 and 637 mu and b at 455 and 662 mu. The 

"second Emerson effect"^ no doubt plays a part in the overall 

absorption spectrum of pigments. It varied with the plant 

according to Govindjee and Rabinowitch (25) and peaks ranged 

from 570 to 700 mu. Violaxanthin from pansies, brown algae 

and green leaves showed two spectral absorption peaks in the 

blue range, 472 and 442 my. Mohr (45) presented an action 

spectrum for anthocyanin formation in Sinapis. Peaks were at 

475 and 725 my. Several other researchers studying the ab­

sorption spectrum of plant pigments have found similar results 

(55, 57, 61) . 

e second Emerson effect is the increased photosyn­
thetic activity of far red light caused by a simultaneous 
application of light with shorter wave lengths. 
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Other photophytological processes 

Phototropism Comprehensive quantitative observations 

on light intensity and wave length relations in phototropic 

responses were made by Blaauw (5). His work showed that blue 

light is phototropically the most effective and has since 

been verified by many investigators including Seliger and 

McElroy (62). An action spectrum for the positive curvature 

of Avena coleoptiles was developed by Seliger and he noted a 

main energy peak at 445 mu with secondary peaks around 430 and 

470 mu. 

Photoperiodism Hendricks and Borthwick (29) have ex­

tensively investigated the action of red (around 660 mu) and 

far red (approximately 730 mu) light on the growth of Pinto 

beans. They were able to promote or inhibit leaf expansion 

by alternating doses of red and far red light and the last 

exposure created the dominating effect. They termed the 

receptor pigment involved in the phenomenon, phytochrome. 

Salisbury (58) has shown that the flowering of short-day 

plants is inhibited and flowering in long-day plants promoted 

by a red light interruption of the dark period. The response 

is reversed by far-red light, if it is given immediately 

following the red. The controlling factor in photoperiodism 

appears to be the phytochrome system (58). 
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Additional photophytological processes including the 

photochemical apparatus related to photosynthesis, photoaxis 

and the high-energy reaction system of photomorphogenesis are 

beyond the scope of this review. 

It is apparent that many of the photo-stimulated re­

sponses related to plant growth occur within the blue and red 

regions of the light spectrum. The light quality and quantity 

utilized by plants for "normal" growth in greenhouses can con­

ceivably be modified. Thus the transmission characteristics 

of FRP panels in the blue and red portion of the spectrxam could 

relate directly to plant growth, providing all other growth 

factors are in equipoise. 
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PART I 

GROWTH RESPONSES OF DIANTHUS CARYOPHYLLUS 

TO SPECTRAL AND HEAT TRANSMISSION BY 

GLASS AND GREENHOUSE GRADE FIBERGLASS 

REINFORCED PLASTIC PANELS 
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MATERIALS AND METHODS 

Facilities 

A greenhouse 72' x 15', oriented east and west and con­

sisting of four compartments (A, B, C, and D) was used for 

this investigation (Figure 2). Each compartment was 18' x 15' 

and covered from west to east with greenhouse grade panels of 

1 2 
FRP frost white, clear and super clear respectively. The 

covering^ on the fourth compartment was twelve year old green­

house glass. The frost covering, installed in June, 1964, was 

unusually darkened by age when compared to new material. The 

clear panels were installed in the fall of 1965 and the super 

clear material, June 1967. Cooling and heating- equijanent is 

described by Hanan (27). 

A redwood bench 40 inches wide x 144 inches x 8 inches 

deep was centered in the north and south halves of each com­

partment. Only a portion of the north bench was used in this 

investigation. 

Each compartment was heated to 60°F and cooled to 65°F 

during daylight hours. Night temperatures were controlled 

at 53°F +1.°. 

^FRP = Fiberglass Reinforced Plastic 

2 
Super clear is a term applied to exceptionally clear FRP 

panels used as greenhouse covers. 

^The terms covering, treatment and panels are used inter­
changeably throughout the dissertation. 



EVAPORATIVE PAD 
AUTOMATIC VENTS 

tn 

•18 

?.4RED 
24 WH. 

I 
N 

EXHAUST 
FAN 

to 
OJ 

Figure 2. Floor plan of Colorado State University temperature greenhouse 
with environmental controlled compartments covered with glass 
(D) and FRP panels of frost (A), clear (B) and super clear (C). 
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Humidity was not controlled. Generally, free water was 

present on the compartment floors and the relative humidity 

seldom went below 30%. 

Atmospheric carbon dioxide concentrations were periodi­

cally monitored in each compartment with a Beckman model LB 15A 

infrared gas analyzer and injection rates were adjusted to 

maintain at least 500 ppm during daylight hours and periods of 

non-ventilation. 

The north bench of each compartment contained a commercial 

medium called Idéalité, a hard pervious substance capable of 

retaining adequate moisture and providing excellent water 

drainage and aeration. The medium was steam sterilized before 

planting. 

A peripheral watering system irrigated the plants automat­

ically three minutes twice each day until November 1, three 

minutes once each day November 1 to March 1 and then twice a 

day. Irrigation was controlled in all compartments by a common 

electric timer-solenoid combination. 

A Smith model R-B fertilizer injector was used to inject 

nutrients into the irrigation system each time the plants were 

watered at a rate of: N, 178; k, 154? Mg, 12; P, 15; and By 10 

ppm per 1000 gallons of water. 
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Plant Materials 

Twenty four rooted carnation cuttings (Dianthus caryophyl-

lus) of the varieties CSU Red and White Pikes Peak, were 

planted at random, three per sq. ft. in a 48" x 42" plot in 

each compartment on July 18, 1967 (Figure 2). The cuttings 

were obtained from foundation stock at Colorado State Univer­

sity. The terminal growing tips of all plants were removed 

approximately four weeks after planting and the plants grown 

for flower production using standard growing procedures. 

Measurements 

All measurements were taken in Fort Collins, Colorado 

(105° -04' west longitude and 40° -35' north latitude) at an 

elevation of 5,08 0 feet above sea level and between September 

30, 1967 and June 21, 1968 to evaluate the growth response to 

spectral and heat transmission of the four coverings. 

Yield 

The flower production between November 26, 1967 and June 

23, 1968 was recorded. Additional measurements included fresh 

weight, length from the top of the calyx to the cut end of the 

stem, and length of the second and fourth internodes below the 

calyx. 

The reproductive buds occurring along the flower stem and 

the first vegetative break below the calyx were harvested bi­

weekly starting November 11, 1967, for fresh and dry weight 

measurements. 
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Temperatures 

All surface temperature measurements were obtained with a 

Barnes infrared thermometer.^ Measurements were from black 

and white construction paper, red and white flower heads and 

plant foliage. The black and white surface temperatures taken 

in each compartment and outside were on a plane perpendicular 

to the sun. Readings were not corrected for the emissivity of 

the surfaces. 

Inside and outside air temperatures were monitored with a 

24 point thermocouple recorder. 

Spectral transmission 

The spectral distribution of outside solar radiation and 

that transmitted through the covering on each compartment was 

measured with an ISCO model SR and SRR recording Spectroradi-

ometer. The instrument, periodically calibrated, measured the 

electromagnetic spectrum between 400 and 1550 millimicrons. 

Measurements inside were made with the sensing element placed 

at flower head height and parallel to the horizon. 

Heat transmission 

Heat transmission data were obtained with Sol-A-Meter 

Mark II pyranometers which responded from 3 50 to 1150 milli­

microns, peaking at 850 millimicrons. 

^Sensitivity of instrument, 8 to 14 microns. 
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All radiation and temperature measurements were taken on 

approximately 14 day intervals between December 21, 1967 and 

June 22, 1968 and when the sun was at maximum daily altitude 

and/or between 11:00 a.m. and 1:00 p.m. Mountain Standard 

Time. 

Statistical Analysis 

A complete statistical analysis was performed using the 

CED G400 computer and the "canned" programs available from the 

Biometrics Unit of the C. S. U. Statistical Laboratory. Vari­

ance was determined for the various responses of interest. 

Statistically significant factors were further investigated 

using methods of multiple comparisons, graphical techniques, 

and other suitable statistical methods. Tukey's w-procedure 

called the honestly significant difference (HSD), which is 

similar to the LSD test, was used to evaluate the significance 

of most data (67). 
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RESULTS 

Plant Characteristics 

Yield and stem length 

Between November 26, 1967, and June 23, 1968 the greatest 

number of both red and white flowers were produced under the 

super clear FRP covering and the least under the frost cover 

(Table 1). Production under super clear was 20.3 and 12.0 

respectively. Total production under clear and super clear 

was not significantly different. 

Stem length The stem lengths^ of the red flowers 

grown under glass were shortest and were progressively longer 

under the clear, super clear and frost respectively. There was 

no significant difference between lengths of red flower stems 

grown under the frost and those grown under the super clear 

coverings (Figure 3). The length of both red and white flower 

stems produced under all FRP covers was significantly longer 

than those grown under glass (Table 1). The stems of the 

white carnations grown under frost were significantly longer 

than those from all other covers. 

Internode lengths Total stem length, a function of 

intemode length, can be controlled by one, several or all 

^All flowers were cut directly above the seventh node 
belc^^ the calyx. 



Table 1. Production characteristics of white Pikes Peak and CSU red carnation 
varieties grown under coverings of glass and FRP panels of frost, 
clear and super clear between November 26, 1967 and June 23, 1968. 

COVER TOTAL FLOWERS MEAN 
WEIGHT (gms) 

MEAN 
LENGTH (cm) 

SECOND 
INTERNODE (cm) 

FOURTH 
INTERNODE (cm) 

RED WHITE RED WHITE RED WHITE RED WHITE RED WHITE 

FROST 
CLEAR 
S. CLEAR 
GLASS 

227 
233 
288 
267 

268 
316 
333 
279 

27.67 
26.25 
29.66 
27.87 

2760 
27.26 
27.58 
26.76 

51.14 
47.69 
50.21 
46.51 

51.66 
50.19 
50.03 
48.20 

3.57 
3.74 
3,22 
3.13 

3.83 
3.73 
3,77 
3.37 

10,62 
10,53 
11.08 
10.29 

11.51 
11.44 
11.32 
10,85 

Q 'HSD"  1.04 1 .04  1 .08  1 .08  0,30 0.30 0,23 0,23 

"Tukey's honestly significant difference 
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internodes. No significant differences occurred in the mean 

lengths of the second and fourth internodes of white flowers 

grown under FRP covers (Table 1). Both the second and fourth 

internodes of all flowers grown under glass were significantly 

shorter than under any PRP treatment except the second inter-

node of red flowers produced under the super clear cover. 

Growth 

Both fresh and dry weights of flowers, vegetative breaks 

and lateral buds produced under each cover were evaluated. 

Flower weights The fresh weight of red flowers grown 

under the super clear cover was significantly greater than 

under all other covers. No significant differences in weight 

occurred between those grown under the FRP frost and glass 

covers (Figure 4). The lightest weight red flowers were grown 

under the clear covering. There were no significant differ­

ences in the weights of white flowers under all covers (Figure 

4) . 

Vegetative breaks There were no significant differ­

ences in the biweekly production of the first vegetative 

breaks below all flower calyxes (Table 2). The dry weight of 

breaks produced under the super clear cover was only signifi­

cantly greater than dry weight production of breaks under the 

frost treatment. The mean fresh weight of each break produced 

under all covers was not significantly different. 



Figure 3. Stem length confidence intervals (95 percent) of 
red and white carnation flowers produced under 
coverings of glass and FRP panels of frost, clear 
and super clear. 

Figure 4. Fresh weight confidence intervals (95 percent) of 
red and white carnation flowers produced under 
coverings of glass and FRP panels of frost, clear 
and super clear. 
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Table 2. Mean fresh and dry weights and percentage dry matter of disbuds and first 
vegetative breaks produced by white Pikes Peak and CSU red carnation varieties 
grown under four coverings between November 11, 1967 and June 25, 1968. 

BREAKS BUDS 

COVER NO BREAKS 
BIWEEKLY 

MEAN FSH" 
WT/ BRK 

MEAN DRY" 
WT/BRK 

PERCENT 
DRY MATTER 

BIWEEKLY" 
MEAN FSH WT 

MEAN" 
DRY WT 

PERCENT 
DRY MATTER 

FROST 18.84 2.07 0.297 14.34 84,72 14.30 16.88 
CLEAR 20.84 2.25 0.344 15.29 105.84 18.16 17.15 
S. CLEAR 23.05 2.36 0.357 15.13 127.68 22,60 17,60 
GLASS 20.47 2.19 0.325 14.84 1 16.44 21.69 18.63 

Q= HSD" 4.59 0.47 0.047 29.42 5.35 

"TuKey's honestly significant difference 
''All weights in grams 
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Lateral buds The fresh and dry weights of lateral buds 

produced under the super clear cover differed significantly 

only from those produced under the frost cover (Table 2). 

Transmission Characteristics 

Spectral transmission 

The mean spectral transmission curves (400 to 750 mu) 

created by the four treatment covers on twelve random 

unobscured (cloudless) days between December 21, 1967 and June 

22, 1968, are shown in Figure 5. The percentage of unobscured 

insolation received under the same four coverings are shown in 

Figure 6. 

Spectral transmission characteristics (400-1500 mu) of 

the four covers are contained in Appendix A. 

The differences in transmission characteristics of the 

four coverings were compared to insolation on May 13, 1968, 

an unobscured day, and May 15, a day of total overcast. During 

periods of total overcast there were no significant differences 

between the spectrums transmitted by the four coverings (Figure 

7) . 

Color bands The visible light transmitted by each 

cover was divided into four color response bands: blue, 425-

475 my; green, 525-550 my; red, 625-675 mu and far red 700-

750 mu. The blue and red band widths (50 mu) were chosen 

because most of the action peaks in the light spectrum for 



Figure 5. Mean spectral curves for unobscured light, 400 to 
750 lau, transmitted through coverings of FRP frost 
clear and and super clear panels and glass during 
twelve random periods between December 21, 1967 
and June 22, 1968. 

Figure 6. Percent unobscured insolation received under four 
covers on twelve random periods between December 
21, 1967 and June 22, 1968. 
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Figure 7. Spectral intensity under four covers: A. May 13, 
1968 an unobscured day and B. May 15, 1968 a day 
of total overcast 

Figure 8. Mean spectral intensity bands of blue, green, red 
and far red light transmitted by coverings of FRP 
frost, clear and super clear and glass as compared 
to unobscured insolation during twelve random 
p e r i o d s  b e t w e e n  D e c e m b e r  2 1 .  1 9 6 7  a n d  J u n e  2 2 ,  
1968. 



38 

SOLAR INSOLATION 
GLASS 
SUPER CLEAR 
CLEAR 
FROST 

500 550 600 
WAVE LENGTH ( 



39 

photosynthesis and pigment absorption occur within these bands 

(14, 16, 33, 35, 42, 43, 54, 63). The green band (25 mu) was 

arbitrarily chosen to encompass wave lengths within the green 

portion of the electromagnetic spectrum. The far red band 

(50 mu) included wave lengths involved in the phytochrome 

system (29, 58). The mean spectral intensity of the measured 

wave lengths in each band was computed and is graphically 

compared in Figure 8. 

Heat transmis s ion 

In Figure 9, the percent energy (BTU's) transmitted by 

the covering of each compartment is compared to the mean 

percentage of all wave lengths (400 to 1550 my) transmitted. 

A near linear relationship exists between the two sets of data 

with the frost covering transmitting the smallest percent of 

solar heat. 

Plant temperatures The surface temperatures of red 

flowers and foliage grown under glass were significantly 

greater than under any other cover (Table 3). The tempera­

tures of the red flowers grown under the frost cover were 

significantly lower than those under all other covers. The 

foliage temperatures under clear and super clear FRP panels 

were not significantly different but both were significantly 

greater than those under the frost treatment. Tonperatures 

of foliage and red flowers were significantly greater under 
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Figure 9. Relationship of spectral intensity and solar 
energy: 

A. Percent of mean solar spectral intensity, 400 
to 1550 mu, transmitted by four coverings 
during fifteen random periods between December 
21, 1967 and June 22, 1968. The portion of the 
bar below the "divider lines" represent the 
percent energy in the visible spectrum 
(400-750 mu). 

3. Percent of mean solar BTU's received under 
four coverings during a 2 hour midday period 
for 88 days between September 30, 1967 and 
June 22, 1968. 



Table 3. Mean surface temperature of black and white paper, red and 
white carnation flower heads and foliage under four coverings. 

SURFACE TEMPERATURES F® 

COVER BLACK 
SURFACE 

WHITE 
SURFACE 

RED 
FLOWER 

WHITE 
FLOWER 

FOLIAGE AMBfENT 
AIR 

FROST 97.6 76.9 78.6 74.0 68.2 INSIDE 
CLEAR 106.2 79.4 82.7 76.1 69.1 68.1'F 

S. CLEAR 108.8 79.5 81.5 74.5 69.4 OUTSIDE 

GLASS 1 II.O" 82.9 87.8 77.1 71.3 59.3®F 

OUTSIDE 107.8 67.9 

Q = HSD'* 1.58 1.58 1.32 1.32 0.65 

"lukey's honestly significant difference 
^Due to limitation of Instrument, reading Is low 
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glass than those measured under all FRP covers. The tempera­

tures of white flowers grown under glass and clear FRP were 

significantly greater than those measured under frost and 

super clear FRP but the pairs did not differ significantly. 

Only the foliage temperature under frost approached the inside 

ambient temperature. 

Black and white surfaces The black and white surface 

temperatures, which simulated black and white body tempera­

tures, were representative of incoming solar heat. There were 

significant differences between black surface temperatures 

under all covers, with those under glass the highest. White 

surface temperatures followed the same trend, but the clear 

and super clear surfaces were not significantly different 

(Table 3) . 
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DISCUSSION 

Red and white carnation varieties responded differently 

within and between each cover treatment. This indicates that 

specific environments would be required for each variety or 

clone in order to obtain maximum quality and production. 

An important commercial cultural factor involves the 

number of vegetative breaks left on the plant at the time of 

disbudding.^ All plants grown under FRP panels produced 

flowers with a weight-length ratio almost equal to the require-

2 ments for a fancy grade flower on the commercial market. It 

is conceivable that in areas of high light and under FRP, a 

grower can always produce flowers of a fancy grade by removing 

two vegetative breaks and a standard grade by removing only 

one during disbudding procedures. Removal of two vegetative 

breaks from stems produced under glass would generally yield a 

standard grade flower. 

Hasselkus and Beck (28) reported that anthesis of 

Pelargonium hortorum was delayed under decreased light inten­

sity, due to low shelf location in a FRP covered area, but 

^A standard procedure of removing lateral buds and excess 
vegetative breaks. 

2 Commercial market grades of carnations are: (a) fancy, 
a large unblemished flower with a 24 inch (60.9 cm) stem 
weighing 25 grams. (b) standard, an unblemished flower 20 
inches (50.8 cm) and weighing 15 grams. 
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was comparable to growth under glass on higher shelves. In 

this portion of the investigation, decreased light intensity 

under the frost cover and high light transmitted through glass, 

produced similar results. Table 4 shows the peak production 

periods of red and white carnations grown under the four 

covers. Once again a varietal response occurred. The first 

production peak was comparable in all FRP coverings and fastest 

under glass. The light under all covers prior to the first 

peak was sufficient for photosynthetic activity during early 

stages of development. The second production peaks occurred 

during the lowest light period of the year thus accentuating 

peak and varietal differences under each cover. As a conse­

quence no definite trend could be established. 

The discoloration of the frost FRP cover due to aging, no 

doubt caused decreased production and rate of growth. Figure 

10 compared the percentage of solar energy transmitted through 

the 42 month old frost FRP covering and a new frost panel. 

Approximately 8.2% more light (400-750 my) was transmitted 

through the new frost than through the old cover. Possibly the 

production rate of plant growth under the old frost treatment 

might have been equal to or better than glass if new frost FRP 

had been used. Such results would be in agreement with Holley 

et al. (32) who found that carnation plants grown under frost 

FRP and crystal clear PVC outproduced glass by 16 and 15 per­

cent respectively during the first 65 weeks. 



Table 4. Peak production periods for varieties of Pikes Peak 
white and CSU red carnations grown under four covers 
based on a three week moving near, from November 2 6 ,  
1967 through June 23, 1968. 

Weeks from planting to peaks of production 

\ FIRST PEAK SE[C()h4D F%E/\K 
COVER red white red white 

FROST 23 21 45 34 

CLEAR 25 23 38 39 

S. CLEAR 25 25 33 40 

GLASS 21 21 35 46 

planting! date: July 18,1967 



100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

•—* NEW FROST FRP 
•  O L D  F R O S T  F R P  

400 

1 0 .  

45Ô ' 500 ' iSo ' 650 ' eSo ' tSO ' 7&0 
. WAVE LENGTH (m// ) 

Percent of insolation transmitted by four year old and new 
panels of FRP frost. 



47 

The spectral transmission characteristics of each cover­

ing were similar in that there was little difference in the 

ratios of blue, green, red, and far red intensities. Table 5 

indicates the ratios of incoming light to that transmitted 

through the four covers and a visual illustration of this can 

be seen in Figure 8. The data were from 12 random unobscured 

days and were not representative of periods with various cloud 

types and abnormal atmospheric conditions that occurred during 

- = the investigation. 

The energy present in each band of wave lengths (Figure 8) 

is shown in Table 6. It can be postulated that the ratios of 

the energy in the green, blue and red wave length bands may 

determine the rate and degree of plant growth- However, in 

this part of the investigation the band energy ratios of all 

covers were similar. For this reason the resulting growth 

responses are attributed in part to the total energy received 

in each compartment. The mean total energy received under the 

frost cover was too low for adequate photosynthetic activity 

and growth was retarded. ' 

The differences in light intensity received through each 

cover was apparently a major controlling factor in plant 

response. Blackman (4) and Burkholder (8) found that plant 

growth accelerated as intensity increased until light satura­

tion was reached. In this part of the investigation, all 

covers, except frost FRP, evidently provided adequate light 



Table 5. Ratios of incoming blue, green, red and far red unobscured 
light compared to the same wave length regions transmitted 
by glass and PRP frost, clear and super clear panels. 
Twelve random samples on days between December 21, 1967 
and June 22, 1968. 

INTENSITY RATIOS 
COVER BLUE-.GREEN BLUE: RED GREEN:RED RED:FAR RED 

FROST 1 : 1.27 1 : 1.23 1 : 097 1 : 0.89 

CLEAR 1 : 1.15 1 : 109 1 : 094 1 : 0.87 

S. CLEAR 1: 1.14 1: 1.04 1 : 091 1 : 085 

GLASS 1 ; 1.12 1 ; too 1 : 089 1 ; 084 

SOLAR 1:091 1 : 096 1 : 089 1 : 083 

00 



Table 6. Mean energy of blue, green, red and far red bands of wave 
lengths transmitted by coverings of FRP frost, clear and 
super clear and glass as compared to unobscured insolation 
during twelve random periods between December 21, 1967 and 
June 22, 1968. 

ENERGY RECEIVED"- ergs per sec per cm^ 

BLUE 
(425-475 m/<) 

GREEN 
(525-550 m//) 

RED 
(625-675 mfj) 

FAR RED 
(700-750 mfj) 

SUM OF 
BANDS 

FROST 
CLEAR 
S. CLEAR 
GLASS 
OUTSIDE 

157.80 
240.35 
287.75 
344.50 
436.25 

100.45 
139.13 
164.03 
193.23 
239.72 

194.25 
263.65 
301.00 
344.50 
428.85 

174.30 
229.70 
257.50 
290.75 
359.15 

626.80 
872.83 
1010.28 
1172.98 
1463.97 

"All numbers xlO^ 
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intensity and perhaps the plants reached light saturation» 

Each cover created a different light intensity and plant 

growth differed accordingly. The differences in response to 

light intensity of red and white varieties tend to substan­

tiate the work of Holley (30), who found that the relative 

growth rates of three carnation varieties varied according 

to the seasonal light intensity. During months of high light, 

the carnation growth rates were similar and during winter 

months, the growth rates of the same varieties were consider­

ably different. 

New fiberglass reinforced plastic panels in greenhouses 

accumulate condensate on the underside and excessive dripping 

occurs. After one or two years the surface tension and/or 

adhesion qualities change and the droplets are less evident. 

The super clear cover permitted considerable condensate during 

the investigation so spectral transmission characteristics 

were determined with and without condensate. A preliminary 

study on the effect of condensate on super clear FRP indicates 

that a decrease in the mean intensity between 400 and 750 my 

of about 8 percent. The intensity ratios of different wave 

lengths were not appreciably altered. 

Another possible factor contributing to decreased growth 

and production under glass was the effect of light intensity on 

transpiration. Rackham (56) noted that transpiration of 

Impatiens parviflora increased with increasing light intensity 
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but was not linearly proportional. Burkholder (7) summarized 

the work of several workers noting a direct effect of radi­

ation on transpiration, depending on the evaporating power of 

the air. It can be postulated that radiation transmitted 

through coverings of glass, which is greater than through FKP, 

increases leaf temperature and the absorbing power of the air 

surrounding plants and thus increases transpiration. The water 

loss exceeded uptake, creating a water deficiency and reduced 

plant growth. 
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SUMMARY 

In general the environment created by the covering of FRP 

super clear enhanced plant growth more than the environments 

created by glass and panels of clear and frost FRP. Plant 

responses and environmental conditions include: 

1. More flowers of both red and white were produced under 

the super clear FRP covering than under any other 

covering. The least flowers were produced under frost. 

Production of flowers under glass and under FRP clear 

was comparable. 

The lightest weight red flowers with the shortest 

stems were produced under glass. The weights of 

white flowers produced in all covers were not signifi­

cantly different. The shortest stemmed white flowers 

were produced under glass. 

There were no significant treatment differences 

in the biweekly production of first vegetative breaks 

or in their weights. 

2. The surface temperatures of black and white paper, 

red flowers and plant foliage were significantly 

warmer under glass and cooler under FRP frost than 

under any other cover. White flower surface tempera­

tures under glass did not differ significantly from 

those under the clear FRP treatment. 
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3. A decreasing percentage of solar heat was transmitted 

by the coverings of glass and panels of FRP super 

clear, clear and frost respectively. 

4. The mean intensity of transmitted wave lengths between 

4 00 and 1550 my was lowest under frost FRP cover and 

increased progressively under clear and super clear 

FRP covers and glass. 

5. Small differences occurred between the ratios of blue, 

green, red and far red bands of light transmitted by 

each covering. The intensities of all bands decreased 

progressively under the glass cover and FRP super 

clear, clear and frost coverings respectively. 

6. The mean spectral curve transmitted by each covering 

on cloudless days was comparable in wave length dis­

tribution, but varied in intensity. On days of 

total overcast the transmission characteristics under 

all coverings were basically equal in distribution 

and intensity. 
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PART II 

GROWTH RESPONSES OF PLANTS TO INSOLATION 

TRANSMITTED BY TINTED PANELS OF 

FIBERGLASS REINFORCED PLASTIC 
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METHODS AND MATERIALS 

Chamber Construction 

Covering development 

Colored samples of five ounce greenhouse grade FRP panels 

and other colored, nearly transparent materials such as over­

head projector transparencies and filters for theatrical 

lighting were compared for spectral transmittancy with the 

ISCO model SR and SRR Spectroradiometer. Forty-four Roscolene 

filter samples produced by Rosco Laboratories, Inc., Harrison, 

N.Y. were evaluated visually for color, density and general 

sunlight transmission. Nineteen samples within the blue, 

violet and red ranges were chosen for further analysis. 

Spectral analysis Spectral analyses were made using 

insolation as the light source on April 8 and 9, 1968. April 

8 provided a spectrum with unobscured solar insolation and 

April 9, a uniform cloud cover. The target of the sensing 

element was placed perpendicular to the horizon so both dif­

fuse and direct radiation would be analyzed. All readings were 

taken between the hours of 10:00 a.m. and 2:00 p.m. Mountain 

Standard Time, when the sun was at an angle no greater than 

33° to the samples. 

Filter selection From the nineteen Roscolene filter 

samples analyzed four were chosen for replication in fiberglass 

reinforced plastic panels. Figures 11 and 12 show the spectral 



Figure 11. Spectral transmission, characteristics of four 
specific Roscolene plastic samples during a 
period of unobscured insolation. April 9, 1968. 

Figure 12. Spectral transmission characteristics of four 
specific Roscolene plastic samples during a period 
of overcast. April 8, 1968. 
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transmission characteristics of the samples within the visible 

region on an unobscured and totally overcast day. The spec­

tral transmission characteristics between 400 and 1550 my of 

all nineteen Roscolene samples are shown in Appendix B. 

The blue and magenta filters were chosen to provide de­

creased intensities in both ends of the transmitted spectrum. 

The pink filter provided transmission characteristics com­

parable to the photosynthetic action spectrum described by 

Hoover (33) . The intensities of blue and red transmitted 

through the violet filter were nearly equal, and almost 8 0 

percent greater than the green portion- The four selected 

filters are shown in Figure 13. 

Fiberglass reinforced plastic color samples The four 

Roscolene color samples chosen for replication in FRP labora­

tory samples were sent to major FRP panel producers. Three 

FRP panel manufacturers, Lasco Industries, Montebello, Cali­

fornia; Filon Corporation, Hawthorne, California; and 

Structoglas Incorporated, Argo, Illinois made 6 inch by 6 inch 

laboratory samples duplicating the color and spectral trans­

mission characteristics of the Roscolene "base" colors as 

close as possible. They also provided additional laboratory 

samples, one hue lighter and one hue darker than each of the 

base colors. The same criteria used in evaluating the Rosco­

lene filters applied to the selection of the most desirable 

laboratory samples. The four samples are shown in Figure 14. 



Figure 13. Four Roscolene filters selected for duplication 
into FRP laboratory samples. Clockwise: 832-rose 
pink, 851-daylight blue, 825-no color pink and 
842-special lavender. 

Figure 14. Four FRP laboratory samples selected for duplica­
tion into corrugated FRP panels. Clockwise: blue, 
violet, pink and magenta. 
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Spectral analysis of the "base" samples and darker and lighter 

hues were made on June 27, 1968 (Figures 15a, 15b, 15c and 

15d). The spectral transmission characteristics of the re­

maining samples are shown in Appendix B. After analysis, the 

companies were requested to produce 60 sq. ft. of the desig­

nated laboratory samples in 5 oz., 2h" corrugated panels for 

use as chamber coverings. 

Chamber design 

Six chambers, each containing 97.5 cubic feet of space 

and 24.0 sq. ft. of floor area, were constructed in the south 

half of the Colorado State University floriculture research 

wind tunnel (Figure 16). The quonset shaped wind tunnel, 

oriented east and west, provided maximum solar radiation with­

in each chamber. Each chamber was separated by a plywood wall 

attached to the steel pipe framework of the wind tunnel. All 

chamber surfaces were painted white inside and out before the 

coverings were attached. 

Cooling and heating system Each chamber had an inde­

pendent cooling and heating system. Positive cooling was 

accomplished with a two speed 6500/4300 CFM, evaporative 

cooler. A duct system carried the air frem the cooler through 

a plastic distribution tube in a plenum under the floor of the 

chambers (Figures 17 and 18). When any one chamber required 

cooling, the evaporative cooler, chamber damper and exhaust 

fan were energized (Figure 18). 



Figure 15a. Spectral transmission curve of a colored FRP 
laboratory sample selected for duplication-
Lasco no. 4, blue. 

Figure 15b. Spectral transmission curve of a colored FRP 
laboratory sample selected for duplication-
Lasco no. 7, magenta. 
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Figure 15c. Spectral transmission curve of a colored FRP 
laboratory sample selected for duplication -
Structoglas no. 1-A, pink. 

Figure 15d. Spectral transmission curve of a colored FRP 
laboratory sample selected for duplication -
Filon no. 7, violet. 
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a, evap pad for remainder 
of wind tunnel 

b, vinyl film covering 
c, removable FRP panels 

PERSPECTIVE VIEW 

Figure 16. Perspective view of Colorado State University wind tunnel 
and spectral transmission chamber location. 



evap. cooler damper 

BIk. s BIk. I 

iILr idf 

TOP VIEW 

c. 

•pressure relief louver 6-0 
42-0 -

BACK VIEW 

scale; 3/16"= V 

Figure 17. Detailed drawing of top and back views of spectral transmission 
chambers. 
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Figure 18, End view of single chamber showing environmental controls system. 
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Each chamber was electrically heated. A small fan in the 

heater provided rapid and uniform heating capabilities during 

periods of operation. 

Specifications of the equipment used in the facilities 

are presented in Appendix B. 

Temperature control Each compartment was controlled 

by thermostats (Figure 19) placed in a venturi pipe. A spe­

cific temperature rating was preset in each thermostat at the 

factory. A small fan was used to maintain a constant air 

flow across the thermostats and prevent air stratification in 

the chamber. 

A control panel was designed to provide maximum versatil­

ity of the thermostat system consisting of five temperature 

loads and 8 different temperature combinations (Figure 20). 

A Bryant photoelectric control was used to automatically change 

the temperatures to day and night settings. 

The two speed evaporative cooler fan was controlled by 

two separate thermostats in each chamber. The second speed 

was controlled by a thermostat set 2 degrees warmer than the 

initial cooling requirement. The water pump was energized by 

a thermostat when the outside air temperature reached 60°F or 

with a bypass switch on the control panel. 

Covering Each chamber was covered with five ounce 

per square foot fiberglass reinforced plastic panels. Green­

house grades of super clear and new frost white, were 



Figure 19. Factory preset thermometer type thermostat used 
to maintain heating and cooling requirements. 

Figure 20. Temperature control console with solar energy 
recording equipment. 
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installed on chambers 2 and 5. The four tinted FRP panels 

were used to cover the remaining four chambers; violet-1, 

pink-3, blue-4, and red-6. The covering was the only intended 

treatment throughout the investigation. 

Temperatures 

This investigation involved all "warm temperature" type 

plants, thus a minimum of 60°F was maintained, night and day. 

The following data shows the temperature regime used for all 

experiments. 

Low Alarm Second Fan Heat Cool High Alarm 

Night 57° 64° 60° 62° 67° 

Day 57 73 60 71 75 

The measured temperatures for heating and cooling varied +2°F. 

Humidity 

The relative humidity of the incoming air varied between 

8 and 70 percent. During daylight hours and periods of no 

ventilation the relative humidity was approximately 60 

percent. 

Growing media 

All plants were grown in a soil mixture of 2 Fort Collins 

loam, 1 Canadian peat and 1 river sand by volume in 6" plastic 

containers. The growing media had the following nutrient con­

centrations at planting and harvest times: 
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œ. 
NO^ P K Ca Total Salts pH 

(Millimhos/cm) 

Before planting 10 h 5 100 27 6.8 

At harvest 25 Ih 10 200 40 7.4 

Watering and nutrition 

When the soil surface was slightly damp to the touch, the 

pot was watered. Depending on plant size, each pot was 

watered at least once every day. 

Nutrients were automatically supplied at each watering. 

The following nutrient concentrations were injected with a 

Smith model R-8 fertilizer injector at a 1:200 rate: 

ppm per 1000 gallons of irrigation water 

K 223 N 206 

Ca 20 Na 8 

Mg 29 P 64 

B 10 

Carbon dioxide conc entrât ion 

Carbon dioxide concentrations were analyzed periodically 

during the investigation with a Beckman 15-A infrared analyzer. 

During periods of ventilation the concentrations varied from 

270 to 325 ppm. During periods of no ventilation the concen­

tration never dropped lower than 240 ppm during daylight hours. 

It remained below 700 ppm at night. 
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Light 

Solar radiation was the sole source of light and the spec­

trum transmitted by the six coverings was the only intended 

variable. 

Plant Materials 

Plants from three families; Compositae, Leguminosae and 

Solanaceae were used to evaluate the effects of spectral trans­

mission on plant growth. 

Tagetes patula, a French Marigold, was used to observe 

the effects of spectral transmission on rate of flowering, 

branching habit, and flower development. Seed of the variety 

Petite Orange (Y-934) was obtained from the Rocky Mountain 

Seed Company, Denver, Colorado. 

Phaseolus vulgaris, pinto bean, was used for growth rate 

evaluations. Hybrid seed. University of Idaho No. Ill, Lot 

6195 was obtained from the Longraont Seed Company, Longmont, 

Colorado. 

Lycopersicon esculentum was used to evaluate both flower 

development and growth rates. Hybrid tomato seed, variety 

Fireball No. II was obtained from the Colorado State Univer­

sity seed stock of Dr. R. L. Foskett. 

Experimental Design 

The investigation involved six treatments. Two of the 

treatments, frost and super clear FRP, were considered as 
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controls. The remaining treatments were the specifically 

colored FRP panels. Galvanized tin. trays were used to divide 

each chamber into four blocks (replications). Plants placed 

in each block were rotated every four to five days within that 

block (Figure 17). 

All spectral, radiation and temperature data were 

analyzed and correlated statistically and graphically as 

described in Part I Materials and Methods. 

Measurements 

Transmission 

All spectral and heat transmission measurements were 

taken between 10:00 a.m. and 2:00 p.m. Mountain Standard Time. 

A pyranometer described in part I was placed in the center 

of each chamber at plant height to sense heat transmission. 

Radiation reaching the coverings was measured with a pyra­

nometer mounted on top of the Spectral Transmission Laboratory. 

The solar spectrum transmitted through each covering 

was measured with the recording spectroradiometer described 

in part I. Transmission characteristics inside and outside 

the chambers were measured periodically from November 20, 1968 

to January 20, 1969. 

Temperatures 

Plant temperatures were evaluated by measuring the leaf 

surface temperatures of tomato with the Barnes pyrometer also 
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described in part I. The surface temperatures of black and 

white bodies were also recorded in all compartments and 

outside. 

Plants 

Tomato plant development Seed of Fireball number II 

were planted in a flat of steam sterilized media composed of 

1/3 soil; 1/3 sand and 1/3 peat by volume on October 28, 1968. 

The seed flats were placed under intermittent mist and allowed 

to germinate. On November 12, 1968 the seedlings were trans­

planted into 6" plastic pots. The plants, five per pot, were 

developing the first true leaves when transplanted. The plants 

were allowed to grow for forty days, then a pot from each 

block was evaluated, measured and harvested. Additional pots 

were harvested and data taken at intervals of 50, 60, and 70 

days from transplanting. Data taken included fresh and dry 

weights, leaf and flower bud or flower development, stem size, 

and total height. A gauge with a scale of values, ranging 

from 4 (0.4 cm) to 12 (0.9 cm) was used to measure the stem 

size of tomatoes. 

Tomato plant growth rate Seed of Fireball number II 

were germinated in the same manner described in the previous 

experiment. Seedlings were transplanted into 6" pots, three 

per pot, on November 23, 1968. Each block contained 6 pots 

or 24 per chamber. Two pots of plants from each block were 
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harvested 21 days after transplanting. The remaining plants 

were harvested 42 days and 63 days after transplanting. 

Measurements taken included: total height, first through 

fourth internodes, widths of the terminal blade of the second 

and fourth true leaves, number of leaves, development and 

fresh and dry weights. Development criteria and values for 

both tomato experiments were as follows: 

1. No visible buds 

2. Buds visible and separated 

3. Buds large, no color 

4. Buds opening 

5. Buds full open 

6. One or more fruit smaller than % cm in diameter 

7. One or more fruit over % cm in diameter. 

Flower development of French marigolds Seed of Petite 

Orange were planted October 28, 1968, and germinated in the 

same manner as described in the tomato experiment. On November 

12, 1968, six seedlings, with the first true leaves showing, 

were transplanted in 6" plastic pots. Each block contained 

three pots for continuous observations of flower development. 

Sixty-two days after the transplanting date, the plants were 

harvested. The data included total height, number of breaks, 

total flowers and fresh and dry weights. 
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Development rate of Pinto bean plants Pinto bean seed 

were soaked in water from 10-18 hours and then sown in a flat 

containing a mixture of 1/3 Canadian peat and 2/3 horticul­

tural perlite. The seedling flats were placed in a germination 

chamber maintained at 78°F, 60 percent relative humidity and 

10 foot candles of light from an incandescent lamp. Upon 

emergence of the hypocotyl the flats were placed in a 60°P 

greenhouse with 70 percent humidity and full light. 

Transplanting took place six days after soaking the seed, 

just as the hypocotyl straightened and the plumule started to 

emerge. 

The beans in the first replication were soaked on November 

13, 1968 and transplanted November 19, 1968. They were evalu­

ated and harvested fourteen days later, December 3, 1968. The 

following schedule shows the dates of soaking, transplanting 

and harvesting: 

Soak and Sow Transplant Harvest 

Replication 1 November 14 November 19 December 3 
Replication 2 November 25 December 3 December 17 
Replication 3 December 10 December 17 December 31 
Replication 4 December 23 December 31 January 14 

Factors observed at harvest Development - The stage 

of growth achieved during the fourteen day period. The follow­

ing criteria and values were used to evaluate development: 
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Value 

1 No three leaflet leaf visible 

2 First three leaflet leaf opening 

3 First three leaflet leaves ^s-l cm wide 

4 First three leaflet leaves over 1 cm wide 

5 Second three leaflet leaf visible 

6 Second three leaflet leaf opening 

7 Second three leaflet leaves cm wide 

8 Third three leaflet leaf visible 

Other observations included total plant height from the 

top of the pot, length of internode between cotyledons and 

first true leaves (first internode) and the length of the 

second and third internodes. 
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RESULTS 

Plant Responses 

Tomato plant development 

Buds and fruit No significant differences occurred 

in the bud development of first and second clusters on plants 

grown in the chambers covered with FRP panels of super clear, 

pink, frost or violet (Table 7). Bud development under both 

the super clear and pink treatments was significantly greater 

than under the blue and magenta treatments (Figure 21). Plants 

in the super clear and pink treatment also had the first 

and most fruit set and largest fruit at harvest. 

Total height The plants grown in the magenta treat­

ment were significantly taller than those grown in the blue 

and frost treatments (Table 7). 

Fresh and dry weight Plants with the greatest fresh 

weight production were from the super clear, pink and frost 

treatments respectively and the least production from the blue 

treatment. Only the super clear and blue treatments differed 

significantly. There were no significant differences in dry 

weight between treatments (Figure 22). 

Leaf development There were no significant differ­

ences in the number of true leaves produced by the plants 

under the various treatments. Treatments of super clear, pink 



Table 7. Mean developmental responses of Fireball II tomato plants grown under six 
FRP cover treatments and harvested 50/ 60, 7 0 and 80 days after planting. 

TOMATO DEVELOPMENT 

COVER BUD DEVELOPMENT" VISIBLE 
TRUE LEAVES 

TOTAL 
HEIGHT (cm) 

WEIGH! ' (gms) 
STEM SIZE" COVER 

CLUSTER - 1 CLUSTER-2 
VISIBLE 

TRUE LEAVES 
TOTAL 

HEIGHT (cm) FRESH DRY 
STEM SIZE" 

VIOLET 3.19 2.22 9.42 25.43 19.98 1.93 5,59 
S. CLEAR 3.57 2.75 10.00 27.27 25.55 2.84 6.01 
PINK 3.70 2.69 9.89 28.23 24.99 2,75 5.75 
BLUE 2.91 2.00 9.05 23.95 15.19 1.38 4,61 
FROST 3.30 2.27 9.61 22.99 20.74 2.29 6,1 1 
MAGENTA 2.86 1.81 9,51 28.62 17.49 1.51 4,86 

Q=HSD° 0.64 0.62 0.96 3.64 8.07 1 .71 1.12 

"TuKey's honestly significant difference 
'^Defined values,-see materials and methods 



Figure 21. Confidence intervals (95 percent) showing the mean 
development value of buds, flowers and fruit on 
plants of Fireball II tomatoes planted November 12, 
1968 and harvested 50, 60, 70 and 80 days later. 
A value of 4.00 equals fruit less than 1/2 cm in 
diameter and 3.00 equals buds swelling but not 
open. 

Figure 22. Confidence intervals (95 percent) showing the 
mean dry weight production of Fireball II tomato 
plants harvested 50, 60, 70 and 80 days after 
planting. 
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and frost produced plants with the greatest number of true 

leaves (Table 7). 

Stem size The diameters of the stems produced in the 

frost and super clear treatments were significantly larger than 

those grown in the magenta and blue treatment. Stem diameters 

in frost, super clear and pink treatments did not differ sig­

nificantly (Table 7). 

Tomato plant growth rate 

Total height Plants grown under the super clear treat­

ment were taller than all other treatments 21 weeks after 

planting but, the plants grown under the magenta treatment 

were significantly taller during the total investigation. The 

frost treatment yielded the shortest plants which did not dif­

fer significantly from plant height under the violet and blue 

treatments (Table 8). 

Bud development Flower buds in the super clear treat­

ment developed significantly faster than those in all other 

treatments except the frost. Bud development in the pink 

treatment did not differ significantly from the frost treat­

ment and the slowness of flower development under the magenta 

treatment was highly significant. 

Fresh weight production The fresh weight of plants 

harvested from the super clear treatment was consistently and 

significantly heavier (Table 8). The fresh weight production 



Table 8. Mean growth rate characteristics of Fireball II tomato plants grown under 
six FRP panel covers and harvested 3, 6, and 9 weeks after planting. 

TOMATO PLANT GROWTH RATE 

COVER 
TOTAL HT 

(cm) 
INTERNODES (cm) BUD 

DEVELOPMENT" 
LEAF Wl DTH (cm) WEIGHT(qms) NUMBER 

OF LEAVES 
COVER 

TOTAL HT 
(cm) FIRST FOURTH 

BUD 
DEVELOPMENT" SECOND FOURTH FRESH DRY 

NUMBER 
OF LEAVES 

VIOLET 19.39 2.39 1.94 2.24 2.04 2.47 18.03 1 .64 7 33 
S. CLEAR 22.21 2.20 2.27 2.65 2.42 2.54 26.00 2.33 8,15 

PINK 20.94 2.37 1.91 2.36 2.17 2.39 20.63 1.80 7.87 
BLUE 20,46 3.09 1.76 2.23 2.05 2.25 15.34 1.38 7.44 
FROST 18.78 2.19 1 .95 2.39 2.05 2.26 20.90 2.01 7.62 

MAGENTA 23.35 3.88 1 .90 1 .98 2.26 2.39 15.52 1 .44 7.82 

0 = H S D° 2.12 0.24 0.32 0.27 0.25 0.22 4.41 0.63 0.47 

°Tukey's honestly significant difference 

^ Defined value,-see materials and methods 
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under the magenta and blue treatments was significantly lower 

than the production under the super clear, pink or frost 

treatments during the 21 week growing period. 

Dry weight The trend in dry weight production was 

similar to that of fresh weight. There were no significant 

differences in dry weights of plants grown under the super 

clear, frost and pink treatments (Figure 23). 

Other responses Table 8 shows the responses of 

internode length, leaf widths and leaf development. The 

first internode, between cotyledon and first true leaf, was 

significantly longer in the magenta treatment than in all 

others. The super clear treatment tended to be most responsive 

in the remaining categories, but not significantly. 

Flower development of French marigolds 

The growth responses of the marigold to the various cover 

treatments were similar to those of the tomato except in plant 

height (Table 9). The total height of plants grown in the blue 

treatment was significantly greater than all other treatments 

and those grown in the frost, pink and super clear treatments 

were the shortest. 

Rate of flowering The number of days required for the 

opening of the first flower was significantly less for the 

super clear treatment than in all others except the pink. 

Plants in blue treatment were slowest and highly significant 

when compared to all other treatments (Figure 24). 



Table 9. Flowering responses of French marigolds grown under six FRP 
panel covers. 

MARIGOLD FLOWER DEVELOPMENT 

COVER TOTAL HT 
(cm) 

DAYS TO 
FLOWER 

TOTAL 
BREAKS 

TOTAL 
FLOWERS 

FRESH WT 
(gms) 

DRY WT 
(gms) 

VIOLET 10.66 44.00 2.30 1 .32 3.18 0.355 
S. CLEAR 10.55 39.94 2.36 1 .87 4,22 0.477 

PINK i0.4l 

to 2.00 1 .48 2.78 0.313 
BLUE 1 1.77 48.01 1.60 1 .05 2.72 0,320 

FROST 10.02 43.39 1 .62 i .58 3.27 0,408 
MAGENTA 1 1 .03 44.36 1 .01 1 .21 2,17 0,244 

Q= HSD° 0.579 2.076 0.638 0.344 0.556 0.088 

"Tukey's honestly significant difference 



Figure 23. Confidence intervals (95 percent) of mean dry 
weight production of Fireball II tomato plants 
harvested every three weeks after planting. 

Figure 24. Confidence intervals (95 percent) showing the 
number of days required for flowering French 
marigolds grown under six cover treatments. 
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Total breaks The total breaks present on each plant 

were an indication of flowering potential. The plants grown 

in the super clear, violet and pink treatments had signifi­

cantly more breaks (Table 9) than those in all other treat­

ments but showed no significant differences between each other. 

Total flowers The super clear treatment produced the 

most flowers, but not significantly more than the frost or 

pink treatments. 

Fresh and dry weights The fresh weights of plants 

harvested from the super clear treatment were significantly 

greater than those from any other treatment (Table 9). The 

plants having the greatest dry weight were also from the 

super clear treatment and the weights were significantly 

greater than those in all other treatments except the frost. 

Development of Pinto beans 

Development The data in Table 10 indicates that plants 

in the magenta and pink treatments both had significantly more 

development at the end of each 14 day growing period than in 

any treatment, but did not significantly differ between each 

other. There was no significant differences in development 

between the other treatments. 

Total height The plants harvested in the magenta 

treatment were consistently and significantly taller when com­

pared with all other treatments (Table 10). It should also be 



Table 10. The mean growth rate and development responses of Pinto beans grown under 
six FRP panel covers. 

BEAN GROWTH 

COVER DEVELOPMENT^ TOTAL HT 
(cm) 

INI rERNODES(cm) WEIGHTfoms) FIRSTLEAF 
WIDTH (cm) COVER DEVELOPMENT^ TOTAL HT 

(cm) FIRST SECOND THIRD FRESH DRY 
FIRSTLEAF 
WIDTH (cm) 

VIOLET 4.75 8,80 3.52 0.87 0.13 2,28 0.23 5.96 

S. CLEAR 4.92 8. 1 4 3.21 1 .03 0.22 2.61 0.27 6.14 

PINK 5.44 8.50 3.55 1 .22 0.25 2.51 0.26 6,31 

BLUE 4.83 9.12 4.21 1 .20 0.25 2.45 0.24 6,25 

FROST 4.82 7.45 3.02 0.88 0.22 2.45 0,25 6,04 

MAGENTA 5.47 11.68 4.76 2.36 0.50 2.67 0.26 6,87 

Q = H S D" 0.464 1 .73 0.411 0,385 0.117 0.301 0.032 0,384 

"Tukey's honestly significant difference 

''Defined values,- see materials and methods 
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noted that the first, second and third internodes making up 

the total height of plants grown in the magenta treatment were 

significantly longer than those in all other treatments. 

Fresh and dry weights Fresh weight of plants grown 

in the magenta treatment was only significant when compared 

to growth under the violet treatment. There were no signifi­

cant differences between the remaining treatments. 

Dry weights of plants harvested in the super clear treat­

ment was the greatest, but significant only over dry weight 

production in the violet compartment. No significant differ­

ences occurred between other combinations of treatments 

(Table 10) . 

Light Transmission 

The transmission characteristics of each colored fiber­

glass reinforced plastic cover provided definite differences 

in available light and heat that contributed to the varied 

plant responses. 

Spectral transmission characteristics 

Figures 25 and 26 show the mean spectral transmission 

curves from 400 to 750 mp for five random observations made 

on cloudless days between November 20, 1968 and January 9, 

1969 inside each compartment. Figures showing the complete 

spectrum from 400 my to 1550 my are shown in Appendix A. 



Figure 25. Mean spectral curves of unobscured light received 
under compartment coverings of FRP violet, super 
clear and pink between November 20, 1968 and 
January 9, 1969. 

Figure 26. Mean spectral curves of unobscured light received 
under compartment coverings of FRP blue, frost 
and magenta between November 20, 1968 and 
January 9, 1969. 
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Figures 27 and 28 show the spectral distribution of wave 

lengths received in each compartment on January 12, 1969, a 

day with total overcast. 

Light ratios Table 11 shows the mean spectral intensi­

ties and significant differences between blue, gr^n, red and 

far red bands of wave lengths that were transmitted by the 

treatment covers. Figure 29 graphically shows the spectral 

relationship of wavelengths in the same bands. 

Heat transmission 

Data from random four hours observations taken at midday 

between November 27, 1968 and Janaury 16, 1969 indicate that 

the radiant energy transmitted by each cover was significantly 

higher in the super clear treatment than any other treatment. 

It should be noted that the mean outside radiation was lower 

than the mean energy obtained under the super clear and frost 

treatments (Table 12) . 

Surface temperatures 

Foliage The foliage surface temperatures of 

tomato plants grown in the magenta and violet treatments were 

significantly lower than the leaf temperatures in any other 

treatment. There were no significant differences between 

other treatments (Table 12). 

Black surface The surface temperatures of black 

construction paper did not differ significantly between the 

pink and magenta treatments but they were significantly lower 
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Table 11, Mean intensities of wave length bands received 
under six FRP panel covers. 

WAVE LENGTH INTENSITY 
microwatts per (cm^ mfi) 

COVER BLUE 
425-475m/y 

GREEN 
525-550nv/ 

RED 
625-675nv/ 

FAR RED 
700-750nv/ 

VIOLET 41.84 34.94 42.63 43.39 
S. CLEAR 53.53 59.87 56.46 48.58 
PINK 39.69 34.44 51 .96 49.17 
BLUE 51.09 33.29 27.44 41.69 
FROST 47.84 56.24 53.03 46.39 
MAGENTA 20.30 12.91 48.97 47.63 
INCOMING 
INSOLATION 47.05 53.12 47.14 39.72 

Q = H S D° 3.77 5.79 5. 16 2.71 

''Tukey's honestly significant difference 

than in any other treatment (Table 12). The black surface 

temperatures in the super clear and frost were not signifi­

cantly different but the black surface in the super clear 

treatment was warmer than all other treatments. 

White surface The white surface temperatures were 

significantly cooler in the violet treatment and warmest in 

the super clear treatment, but not significantly warmer than 

those in the pink or frost treatments (Table 12). 

A graphic representation of temperatures occurring on 

the surfaces of black and white paper and plant foliage under 

each treatment cover is shown in Figure 30. 



Figure 27. Spectral distribution, of light transmitted by 
violet, super clear and pink FRP panels on 
January 12, 1969, a day of total overcast. 

Figure 28. Spectral distribution of light treinsmitted by 
blue, frost and magenta FRP panels on January 
12, 1969, a day of total overcast. 
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Figure 29. Mean intensities of wave length bands of blue, 
green, red, and far red transmitted by six FRP 
coverings on 5 unobscured days between November 
20, 1968 and January 9, 1969» 

Figure 30. Mean surface temperatures of tomato foliage and 
black and white paper occurring in six compart­
ments with various FRP coverings. 
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DISCUSSION 

Plant Responses 

The plant responses varied throughout the investigation 

and did not agree specifically with the results of previous 

researchers working with light quality. 

Pfeiffer (49) in studying the effects of wave length on 

soybean found that the least differentiation occurred under 

blue light. This investigation revealed that Pinto bean 

plants in the blue treatment were as tall as tKose grown in 

all treatments except magenta and had greater development of 

branch primordia. The bean plants had lower fresh and dry 

weight under blue but not significantly lower than those grown 

in the violet or frost treatments. The greatest positive 

reaction to colored light by the bean plants occurred in the 

magenta treatment. The plants were equally as well developed 

as those in the pink treatment and were the tallest, having 

the longest internodes. The fresh and dry weights of beans 

grown in the magenta treatment were comparable to all treat­

ments except violet and had significantly wider leaves. The 

excessive elongation of the bean in the magenta treatment is 

attributed to the decreased light intensity caused by the 

density of the cover, not necessarily the spectral trans­

mission characteristics. 
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Popp (52) noted that anthesis of most plants involved in 

his experiments was delayed or stopped where no blue or violet 

was present. Hasselkus and Beck (28) found anthesis of 

Pelargonium hortorum was delayed in full spectrum light, when 

the intensity was decreased due to plant location. Buckholder 

(7) found that poor growth and decreased fresh and dry weights 

of several plant species occurred when the blue end of the 

spectrum below 529 my was excluded. This investigation indi­

cates that the delay in the flowering of the marigold was 

highly significant under the blue treatment and fastest 

flowering occurred in the super clear and pink compartments. 

The development of bud clusters in both tomato evaluations also 

indicated poorer growth in blue light. 

The frost treatment provided decreased light intensity 

when compared to the super clear treatment and no significant 

delay in the flowering of tomatoes was apparent, but flowering 

of marigolds in the frost treatment was significantly delayed. 

The work by R. Van Der Veen (71) with tomato plants 

showed that blue light was an effective inhibitor of stem 

elongation. Similar results occurred in this investigation 

but plants grown under the frost treatment were shorter, 

though not significantly, than those grown in the blue treat­

ment. The marigolds grown in the blue treatment were signifi­

cantly taller than marigolds grown in all other treatments. 
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Dunn and Went (14, 72) indicated that a combination of 

blue and red fluorescent light, which resulted in decreased 

green in the spectrum, provided an excellent light for tomato 

growth. Similar results can be attributed to the spectral 

transmission characteristics created by the pink fiberglass 

reinforced plastic covering in this investigation. In most 

instances the plant growth response under the pink treatment 

was equal to the response of plants grown in the full spectrum 

under the super clear cover and better than those grown under 

the frost cover. 

The response of plants grown in the violet treatment was 

somewhat ambiguous. Growth responses of the bean plants to 

the violet treatment were negative, although not necessarily 

significant, they had the lowest fresh and dry weight, devel­

opment and smallest leaf width. The responses of marigolds 

and tomatoes grown under the violet cover seldom varied sig­

nificantly from the responses of plants grown under the super 

clear, frost or pink treatments. 

The lack of either a more positive or negative response 

in the violet treatment is probably due to temperature devi­

ations. The violet chamber was on the end of the complex and 

was the only compartment with two walls exposed to the outside 

elements. During periods of cold weather the daytime tempera­

tures would remain closer to 60°F than to 71°F, the cooling 

level. This no doubt was due to more radiating surface which 
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resulted in approximately 35 percent less cooling time than 

was required by any other treatment. 

Diffused light 

On five random days during the investigation the following 

total cooling time requirements of each chamber were recorded 

in hours: violet, 2.63; super clear, 8.23; pink, 7.23; blue, 

7.10; frost, 9.33 and magenta, 7.40. The super clear and 

frost required the most cooling. Table 12 shows that the 

super clear and frost compartments received significantly more 

heat energy than any treatment and under the super clear cover­

ing the mean energy was significantly greater than the energy 

received outside the ccmpartments. It can also be noted that 

regions of the mean spectral transmission curves of insolation. 

Figures 25 and 26, was lower than the same regions of the 

curves created by the transmission characteristics of the vari­

ous cover treatments. These intensity differences are attrib­

uted to the diffusing capabilities of fiberglass reinforced 

plastic panels which can be explained in the following manner. 

The total solar energy received by a flat target depends on 

the angle of the sun to the sensing element. The insolation 

readings during this investigation were taken with sensing 

elements of both the So1-A-Meter and SR spectroradiometer 

horizontal to the earth's surface and the mean altitude of the 

sun was 30° above the horizon (Figure 31), thus the sensing 
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Table 12. The mean surface temperatures and BTU quantities 
obtained in six plant growth compartments with 
FRP panel covers. 

SURFACE TEMPERATURE F* HEAT 
TRANSMISSION 

BTUs COVER FOLIAGE BLACK WHITE 

HEAT 
TRANSMISSION 

BTUs 
VIOLET 7t.93 102.20 71.20 351.64 
S. CLEAR 74.93 107.00 75.80 401.18 
PINK 74.47 99.00 75.53 341.59 
BLUE 74.07 102.93 74.27 305.08 
FROST 75.40 106.20 75.07 389.94 
MAGENTA 72.53 100.13 74.60 317.66 
INCOMING 
INSOLATION 83.2^ 50.46" 386.88 

Q = HSD° 1.41 1.75 0.76 11.00 

"Tukey's honestly significant difference 
^Not considered statistically 
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elements were exposed to only a minimum amount of direct beam 

radiation. The formula, = ^horizontal ̂  ̂ os e can be 

applied. 

The cosine of 60^, is % and when applied to formula 1, 

the normal incidence reading is twice the horizontal reading. 

T> 
1 R = horizontal 

normal Cos 
incidence 

2 R = R 
normal horizontal x 2 
incidence 

Figure 32 shows the mean spectral distribution curve of inso­

lation, derived from formula 2, and compares it to the energy 

curve that was actually measured with the solar cell 

horizontal. 

The sensing elements within each chamber received direct 

beam light plus all the diffused light created by the FRP 

cover. The small size of the compartments also created in­

creased reflection and thus higher spectral and heat trans­

mission readings. 

The same principles can be applied to the absorption of 

light by plant foliage. The more the light is diffused the 

more energy there is available on a greater leaf area, poten­

tially resulting in increased photosynthesis. 



Figure 31. Graphie representation of target area receiving 
radiation when the sun is at an altitude of 30o. 

Figure 32. Insolation curve corrected for the low angle of 
the sun to the sensing element. 
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We can then surmise that the plant growth in the super 

clear and frost treatments was due mainly to the total energy 

available as a result of diffused and subsequently reflected 

light created by the design of the chamber and not the ratios 

of the various wave lengths. 

Light energy 

Table 13 shows the energy levels equivalent to the spec­

tral intensities within each color band represented in Table 

12. The total energy from incident radiation received in the 

super clear and frost compartments was higher than the insola­

tion energy outside the chambers. Growth (dry weight) of 

tomato and marigold plants in each compartment was almost 

directly proportional to the total energy and the different 

energy levels had no effect on the dry weight production of 

beans. It is thus postulated, there was adequate energy for 

"good" plant growth under the pink cover and the incident 

radiation received at plant level was more than enough under 

the super clear and frost covers. It is also possible that 

the lowest energy received in any one compartment was more 

than adequate for "normal" growth of Pinto beans and the 

energy balance in each spectral band was not limiting. 

Temperatures 

The foliage temperatures evidently had little effect on 

plant growth if we consider that there were no significant 



Table 13. Mean energy bands of blue, green, red and far red unobscured 
light randomly received at midday between November 20, 1968 
and January 9, 1969 in six compartments covered with violet, 
super clear, pink, blue, frost and magenta FRP panels. 

ENERGY RECEIVED"- ergs per sec per cm^ 
BLUE GREEN RED FAR RED SUM OF 

(425-475 m//) (525-550 m//) (625-675 m//) (700-750 m//) BANDS 

VIOLET 209.20 87.35 213.20 216.95 726.70 
S. CLEAR 267.65 149.67 282.30 242.90 942.52 
PINK 198.45 86.10 259.80 245.85 790.20 
BLUE 255.45 83.22 137.20 208.45 684.32 
FROST 239.20 140.60 265.15 231.95 876.90 
MAGENTA 101.50 32.27 244.90 238.15 616.82 
OUTSIDE 235.30 132.80 235.70 198.60 799.40 

°AII numbers x lO' 
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foliage temperature differences between the super clear, frost, 

pink and blue treatments. The surfaces of tomato foliage grown 

in the violet and magenta were significantly cooler than 

foliage surfaces in the remaining treatments. The cooler 

foliage in the violet treatment correlates well with the lower 

white surface temperatures and decreased cooling requirements 

in the compartment. 

Condensate that forms on the inside surfaces of plastic 

greenhouse coverings, often falls as droplets. During the 

course of this investigation the presence of condensate was 

noted on the inside surfaces of the super clear and frost 

coverings and its absence noted on the colored coverings. In­

side surface temperatures of the panels were measured with the 

Barnes infrared thermometer and it was found that the super 

clear and frost were 4° to 13°F cooler than the colored 

covers. 

The visible light passing through the colored FRP cover­

ings is absorbed by pigment particles and increases the temper­

ature of the surrounding plastic and glass media, thus evapo­

rating the condensate. The colorless or frosted type FRP 

panels do not have pigments which absorb light and the plastic 

rCTiains cool. 
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SUMMARY 

Six temperature controlled chambers were covered with 

fiberglass reinforced polyester plastic panels. Four chambers 

were covered with selected colored panels, and the remaining 

two with panels of greenhouse grade super clear and frost. 

The wave lengths transmitted by super clear and frost were 

comparable in quality and quantity to the spectrum of insola­

tion. The four colored covers, blue, magenta, pink and 

violet respectively, modified the transmitted light into 1. 

a high peak in blue, 2. a high peak in red, 3. medium peak of 

blue and high red, and 4. equal peaks of red and blue. 

Responses of seedling tomatoes, French marigolds and 

Pinto beans were: 

1. Bud development of tomato plants grown in the super 

clear and pink was significantly faster than in the 

other treatments. Plants from the blue and magenta 

treatments were slowest. 

2. Fresh and dry weights of tomato plants grown in the 

super clear, pink and frost treatments were consis­

tently higher. Weights in the blue and magenta 

treatments were lowest. 

3. The development, total height, internode lengths, 

fresh and dry weights and leaf widths of bean plants 

grown in the magenta treatment were consistently 
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higher throughout the investigation. The bean plants 

grown in the pink and super clear treatments did not 

differ significantly in development and fresh and dry 

weights when compared to those grown in the magenta 

compartment. Bean plants in the violet and blue 

treatments produced the least desirable growth. 

4. French marigolds flowered the fastest in the super 

clear treatment but did not differ significantly from 

the rate of flowering in the pink treatment. The 

fresh weight in the super clear treatment was highly 

significant. There were no significant differences 

between the fresh weight production in the frost, pink 

and violet treatments. The super clear, frost and 

violet treatments produced the greatest dry matter, 

and the blue cover treatment yielded the tallest 

marigolds with high significance. 

In general, plants grown in the blue and magenta treatments 

responded least favorably to the spectral environment. 

The spectral and heat transmission characteristics of the 

various coverings were evaluated as follows: 

1. Surface tenperatures of tomato foliage in the violet 

and magenta treatments were significantly lower than 

surface temperatures of tomato foliage in all other 

compartments. 
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The surface temperatures of black paper in the pink 

and magenta treatments were significantly lower than 

the other treatments and super clear and frost the 

highest. 

The coolest and most significant white surface 

temperature occurred in the violet treatment. The 

warmest white surface temperatures occurred in the 

super clear, frost and pink treatments. 

The direct and diffused radiation received in the 

super clear compartment was significantly greater 

than in any other treatment or incoming radiation. 

The diffusion characteristics of FRP created more 

usable light for plant growth. 

Heat absorption by the color pigments in the colored 

FRP increased the temperature of the panel and con­

densate on the underside was eliminated during day­

light hours. Condensate remained on the clear and 

frost panels. 

Decreased energy in the green portion of the spectrum 

due to the pink cover had little adverse effect on 

the growth of plants. 
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GENERAL DISCUSSION 

From the beginning of time, all agronomic and ornamental 

crops have generally been bred, selected and grown in environ­

ments with unmodified solar energy. Popp (52) and Pfeiffer 

(49) showed that the growth responses of several plant species 

were better under insolation containing a complete spectrum 

than under light with various wave lengths deleted. This 

investigation showed that the green portion of the light 

spectrum can be decreased by violet and pink covers and plant 

growth comparable to growth under the non-modified spectrum 

obtained. The three plant species responded differently to 

the modified light treatment indicating growth of specific 

plants may be regulated, to a degree, by varying the ratio 

of incoming blue, green, red and far red light. Much more 

research is needed to evaluate, with time, the effects of 

modified solar energy as a light source for specific plant 

species. 

Differences in light energy under the various covers 

were apparently major controlling factors in plant response. 

Blackman (4) and Burkholder (8) found that plant growth 

accelerated as intensity increased until light saturation 

was reached. All covers evaluated in part I, except aged 

frost FRF, evidently provided plants with adequate light 

energy and perhaps reached light saturation. Plant responses 
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in part II may have been due to total energy available and 

not a direct function of wave length intensity. 

The comparable growth obtained under the super clear, 

pink, and frost FRP covers indicated the energy received under 

the pink cover may have saturated the plants and that received 

under super clear and frost may have been in access. 

Several FRP panel manufacturers market super clear panels 

which differ in translucency. Continued research is necessary 

to evaluate growth responses to light transmitted by these 

panels in geographical locations involving altitude, latitude 

and available solar energy. 

Plant temperatures, within environments utilizing solar 

radiation may be partially controlled by the translucency or 

color of the covering. Even though data were not taken in 

this investigation, it is likely that covers may have 

affected also the transpiration rates of the plants and the 

water absorbing power of the plant atmosphere. Part I of this 

investigation showed translucency of the cover affected surface 

temperatures of foliage and flower petals. Under a highly 

translucent (transparent) cover decreased relative humidity, 

increased foliage temperatures and transpiration, limited 

moisture supply in root zone and restricted plant growth may 

result. Interactions of transpiration and temperature under 

greenhouse coverings need to be studied. 
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Aside from the direct effects of modifying the light 

spectrum and decreasing plant temperatures, pink tinted green­

house coverings may result in easier control of cooling even 

though there was no indication that less infrared energy was 

transmitted by the pink and magenta covers. The decreased 

temperatures under the pink cover can possibly be attributed 

to more IR reflected on the surface plus the decreased energy 

transmitted in the green portion of the spectrum. 

The light diffusing capabilities of FRP panels may pro­

vide more available energy for photosynthesis than glass. 

Additional research is needed to study photosynthetic responses 

to diffused light. 

The incorporation of glass fibers into greenhouse grade 

glass could provide diffusing characteristics superior to 

those obtained by sandblasting and equal to the diffusing 

characteristics of FRP panels. Tinting of glass in pink 

hues for greenhouse applications should also be considered. 
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SUMMARY 

Transiuissivity characteristics of glass and fiberglass 

reinforced plastic panels (FRP) were evaluated with pyra-

nometers, a spectroradiometer, an infrared thermometer and by 

plant responses. 

In the first part of the investigation the transmissivity 

characteristics of greenhouse glass and FRP panels of frost, 

clear and super clear were determined with red and white 

flowered varieties of carnation (Dianthus caryophyllus). 

Growth responses differed with varieties. Plants under the 

super clear produced the most red and white flowers and plants 

under frost, the least. Plants grown under clear produced the 

lightest weight red flowers. The shortest stems on plants of 

both flower colors were produced under glass. 

Surface temperatures of black and white paper, red flowers 

and foliage were significantly higher under glass and lower 

under frost. Small differences were observed in the proportion 

of blue, green, red and far red light transmitted by the cover­

ings. The percentage energy transmitted as heat and light 

decreased progressively under glass, super clear, clear and 

frost. 

The second part of the investigation involved the con­

struction of chambers covered with fiberglass reinforced 

panels of super clear, frost and selected colors of blue, 

magenta, pink and violet. 
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French marigolds (Tagetes patula) , Pinto bean (Phaseolus 

vulgaris) and tomato (Lycopersicon esculentum) responded dif­

ferently when grown under sunlight modified by the tinted 

panels. Marigolds produced the greatest dry matter under 

super clear, frost and violet, and the tallest plants under 

blue. Pinto beans grew more rapidly under pink and magenta. 

Differences in dry weight were not significant. Tomato plants 

produced more buds more rapidly and the fresh and dry weights 

were consistently higher under super clear, pink and frost 

than under blue and magenta. 

The surface temperatures of tomato foliage were lowest 

under violet and magenta and highest under frost. Surface 

temperatures of black paper were lowest under pink and magenta 

and highest under super clear and frost. 

The greatest total light energy was transmitted by super 

clear and frost and the least by magenta. 

Condensate present during daylight hours on super clear 

and frost was not observed on the tinted panels. 
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APPENDIX A. SPECTRAL TRANSMISSION CURVES 

Fart ̂  transmission curves (400-1500 mu) 

Figures. 33 and 34 represent the spectral characteristics 

of light transmitted by greenhouse coverings of glass and FRP 

frost, clear and super clear panels between December 21, 1967 

and June 22, 1968. The curves represent data taken at midday; 

mountain standard time, when the sky was cloudless and as far 

as could be visually determined, free of adverse atmospheric 

conditions including haze. 

Part II transmission curves (400-1500 mu) 

The mean spectral characteristics of light received in 

chambers covered with greenhouse grades of FRP super clear 

and frost and tinted FRP panels of violet, pink, blue and 

magenta are shown in Figures 3 5 and 36. The spectral charac­

teristics represent five random, unobscured observations made 

at midday between November 20, 1968 and January 9, 1969. 



Figure 33. Mean spectral characteristics (400-1550 lau) of 
light transmitted by four coverings between 
December 21, 1967 and June 22, 1968. 

Figure 34. Percent of insolation (400-1550 my) transmitted 
by four coverings described in Figure 33. 
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Figure 35. Mean spectral energy received at plant height 
under colored panel of FRP blue, frost and magenta. 

Figure 36. Mean spectral energy received at plant height 
under colored panel of FRP violet and pink and 
super clear. 
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APPENDIX B." CHAMBER DEVELOPMENT AND EQUIPMENT 

Coverings 

Roscolene samples The following forty-four tinted 

Roscolene plastic samples were visually screened for trans­

mission characteristics: 

Rosco Color Rosco Color 
Nos. Designation Nos. Designation 

801 Frost 835 Medium Salmon Pink 
802 Bastard Amber 837 Medium Magenta 
804 No Color Straw 838 Dark Magenta 
805 Light Straw 839 Rose Purple 
806 Medium Lemon 841 Surprise Pink 
807 Dark Lemon 842 Special Lavender 
809 Straw 843 Medium Lavender 
810 No Color Amber 846 Medium Purple 
811 Flame 850 No Color Blue 
813 Light Amber 851 Daylite Blue 
815 Golden Amber 855 Azure Blue 
817 Dark Amber 856 Light Blue 
818 Orange 857 Medium Blue 
819 Orange-Amber 858 Light Green Blue 
821 Light Red 859 Green Blue (Moonlight) 
823 Medium Red 861 Surprise Blue 
825 No Color Pink 863 Medium Blue 
826 Flesh Pink 866 Dark Urban Blue 
828 Follies Pink 871 Light Green 
83 0 Medium Pink 874 Medium Green 
832 Rose Pink 877 Medium Blue Green 
834 Salmon Pink 878 Yellow Green 

The spectral transmission characteristics (400-1500 mp) 

of the nineteen Roscolene samples chosen visually, were 

analyzed at midday on April 8, 1968, a cloudless day, and on 

April 9, 1968, during a period of total overcase (Figures 37, 

38, 39, 40 and 41). The unobscured insolation curve represents 



Figure 37. Spectral transmission curves of Rosco samples 802, 819, 825 
and 826 on an unobscured and totally overcast day. 
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Figure 38. Spectral transmission curves of Rosco samples 830, 83 2, 834 
and 83 7 on an unobscured and totally overcast day. 
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Figure 39. Spectral transmission curves of Rosco samples 838, 839, 841 
and 842 on an unobscured and totally overcast day. 
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Figure 40. Spectral transmission curves of Rosco samples 846, 850, 851 
and 857 on an unobscured and totally overcast day. 
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Figure 41. Spectral transmission curves of Rosco,samples 859, 863 and 
866 on an unobscured and totally overcast day. 
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the mean of several analyses and was often lower in intensity 

than the sample curve obtained with a single analysis. 

Corporation samples The spectral transmission 

characteristics of the FRP laboratory samples, which were 

comparable in color to the four selected Roscolene filters, 

are shown in Figures 42, 43 and 44. The Rosco samples used 

as a color guide for the FRP samples were: no. 825 - pink FRP, 

no. 832 - magenta FRP, no. 84 2 - violet FRP and no. 851 -

blue FRP. Spectral analyses were accomplished at midday on 

June 27, 1968, using unobscured insolation as the light 

source. 

Equipment 

Control equipment The following equipment was used 

to control the environment in the Spectral Transmission 

Laboratory chambers: 

1 2 
a ' exhaust fan - 6 in., 550 CFM, 1/40 HP, Stock no. 

2C634 

1 3 
b ' temperature controls - miniature thermostats pre­

set at factory, 3.0 in. long x 1/8 in. dia., 
+.1 C sensitivity and accuracy. Cat. no. TM-803 

^Corresponds to legend in Figure 18. 

W. Grainger Inc., Chicago, Illinois. 

^Philadelphia Scientific Glass Co., Perkasie, 
Pennsylvania. 



Figure 42. Spectral transmission curves of FRP laboratory samples. 
Violet and pink samples A, Filon Corporation; Violet 
and pink samples C, Structoglas Incorporated, 
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Figure 43, Spectral transmission curves of laboratory samples. 
Blue sample A, Pilon Corporation; Blue sample B, Lasco 
Industries; Blue sample C, Structoglas Incorporated. 
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Figure 44, Spectral transmission curves of laboratory samples. 
Magenta sample A, Filon Corporation; magenta sample 
B, Lasco Industries; Magenta sample C, Structoglas 
Incorporated. 
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air circulating fan 
blade - 450 CFM, h in. bore, stock no. 2C556 
motor - 1/50 HP, 1500 rpm, 115V, stock no. 
3M045 

1 2 
d ' heater - Tital Dual Range, 4500/5600 BTU's. 

stock no. 2H934 

1 2 
e ' damper motor - 115V, stock no. 2C831 

2 
f pressure relief louver - 19k in., stock no. 2C520 

g evaporative cooler - 1725/1140 rpm, 2 speed, 
6500/4330 CFM, 3/4 HP, 115/230/60/1 ph. - local 
source. 

Sensing equipment The equipment used to measure 

transmissivity and surface temperatures in both parts of the 

investigation are shown in Figures 4 5, 46 and 47. The SR 

spectroradiometer sensing unit was placed at flower height 

when transmission data were collected during part I of the 

investigation (Figute 48). 

Facilities 

The Spectral Transmission Laboratory designed and con­

structed for part II of the investigation is shown in Figure 

49. Plant material and equipment were positioned the same in 

all compartments (Figure 50). 



Figure 4 5. Yellott Sol-a-nveter (pyranometer) used to measure 
heat energy transmitted by the various covers. 

Figure 46. Barnes infrared thermometer being used to measure 
the surface temperature of black and white 
construction paper. 
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Figure 47. Model SR and SRR ISCO spectroradiometer being used 
to measure transmission characteristics of fiber­
glass reinforced plastic panels. 

Figure 48. SR spectroradiometer sensing unit positioned for 
measurement of transmitted energy. 
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Figure 49. Spectral transmission laboratory designed for 
evaluating FRP covers. 

Figure 50. Thermostat holder, pyranometer and plants inside 
the compartment covered with pink FRP panels. 
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