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ABSTRACT

An efficient algorithm is presented to determine the blank shape
necessary to manufacture a surface by press forming. The technique
is independent of material properties and instead uses surface ge-
ometry and an area conservation constraint to generate a geometri-
cally feasible blank shape. The algorithm is formulated as an
approximate geometric interpretation of the reversal of the forming
process. The primary applications for this technique are in prelimi-
nary surface design, assessment of manufacturability, and location
of binder wrap. Since the algorithm exhibits linear time complexity,
it is amenable to implementation as an interactive design aid. The
algorithm is applied to two example surfaces and the results are dis-
cussed.

INTRODUCTION

In many industries, the design, analysis, development and pro-
duction of sheet metal surfaces comprise a substantial portion of
component manufacture. The most prevalent manufacturing pro-
cess for sheet metal components is press forming. In spite of its
widespread use, press forming practice has remained somewhat of
an art, typically handled by experienced tooling engineers and de-
signers. This is due to the fact that the physical process of press
forming is not well understood. Complex interacting mechanisms
and features such as friction, metal flow, material properties and
boundary conditions make the press forming process difficult to an-
alyze and predict.

In press forming, the initial flat sheet of material used to develop
the final shape is called the blank. The main components of the
press forming assembly are the punch, die, and the draw binder
mechanism which controls the flow of the blank material inward to
form the product. Design of this forming assembly is directly de-
pendent on the surface definition of the final product. For a surface

design to be manufactured without defects, the blank should be uni-
formly deformed by the descending punch without thinning or
wrinkling. This process is influenced, to a large extent by the draw
binder ring, which is placed outside the trim line, i.e., the boundary
between the formed surface and surrounding scrap material. To lo-
cate the trim line, the designer must determine the boundary of the
area on the blank which is affected by the forming process. This
process is referred to as blank development. Besides binder-wrap
design, the developed blank is also used for punch contact analysis,
press forming layout, and as an indicator of material flow during the
process.

Iterative redesign of a product which fails in production is very
expensive in terms of time and capital investment. It would there-
fore, be highly useful for product designers to quickly determine the
formability of the surface in the early stages of the surface design
process. Detailed analysis techniques such as the finite element
method are computationally demanding and not amenable for an in-
teractive design environment. Thus, there is a need for quick and
qualitative tools which can guide a designer toward a successful de-
sign. This paper presents a technique to bridge the gap between final
design analysis and initial surface construction.

RELATED RESEARCH

Sculptured surface models are employed in a wide variety of ap-
plications in the automotive, aerospace and appliance industries.
Such surfaces can be broadly classified as developable or non-de-
velopable. A developable surface is characterized by the ability to
form the shape by bending a plane without creasing or tearing, i.e.,
the surface can be generated by sweeping straight lines or genera-
tors along a curve in space. Mathematically, a surface is develop-
able if its Gaussian curvature (the product of the principal normal
curvatures) is zero everywhere (Mortenson, 1985). This property is
often exploited in algorithms to map a developable surface onto a




plane (Redont, 1989). Several methods for the transformation of de-
velopable surfaces have been formulated (Clements, 1981; Clem-
ents and Leon, 1987; Chu et al., 1985). For example, Clements and
Leon (1987) developed an algorithm based on the relationship be-
tween the generating and geodesic lines on the surface to get an ac-
curate blank transformation.

Non-developable surfaces encompass the family of surfaces that
have non-zero Gaussian curvatures, and thus cannot be generated
by simple bending of a plane without distortion. However, this does
not preclude the use of these surfaces in manufacturing since they
have advantages over developable surfaces in terms of styling,
aerodynamics and other functional aspects of design. To investigate
blank shape, Chu. et al., (1985) formulate a simplistic constant area
transformation approach for the mapping of a non-developable sur-
face onto a plane. The method is unique from other developments
in the field in that it does not include material properties of the sheet
metal but relies exclusively on the geometric properties of the sur-
face. However, the method is limited by an artificial boundary con-
dition requirement, an approximate area conservation method, and
it is ineffective for surfaces with vertical flanges, i.e., areas of the
surface that lie in planes perpendicular to the blank plane. Blank de-
velopment of non-developable surfaces has largely remained a fi-
nite element analysis problem. Shimada and Tada (1989, 1991)
have formulated methods for such transformations of surfaces us-
ing both the finite element method and dynamic programming. In
the dynamic programming approach Shimada and Tada (1991) use
a two step algorithm to start a multi-stage decision process using a
good initial guess, and then refine the solution to get the final two-
dimensional shape. The method requires computation of strain en-
ergies and solution of stiffness matrix equations. Both the finite el-
ement technique and dynamic programming approach are
computationally intensive.

MATERIAL PROPERTY INDEPENDENT APPROACH

Any tangible product is ultimately defined by its geometry; i.e.,
the geometric aspects of an object qualify it for any purpose. For ex-
ample, an object’s viability with respect to a specific functional con-
figuration is possible only if it is geometrically feasible. It follows
that, if an object can be substantiated geometrically, then it may be
manufacturable. Therefore, prior to detailed design validation in-
corporating material properties, the geometric feasibility of a prod-
uct should first be established. Unlike most physical
transformations, geometric transformations are reversible. Thus if
the geometry of a part and its fabrication process are properly mod-
eled, then the fabrication feasibility of the part can be assessed via
reverse geometric transformation before detailed process analyses
are attempted.

The research presented in this paper, is motivated by this philos-
ophy. For blank development, a qualitative indicator is sufficient at
the preliminary design stage, and can be arrived at using material
independent transformations. In particular, an approach similar to
Chu (1983) is adopted. The methodology is independent of material
properties and relies on basic geometric manipulations to derive the
blank shape and other manufacturability properties.
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CONSTANT AREA TRANSFORMATION ALGORITHM

In sheet metal press forming tool design, the designer strives to
achieve a uniform deformation of the blank to the final surface. The
ideal deformation process is one in which the surface undergoes this
transformation with no change in thickness. To determine such an
ideal transformation, the tool designer would need to know where,
exactly, each point on the blank lies after deformation. This require-
ment combined with the concept of geometric reversibility suggests
the interpretation of blank development a geometric transformation
problem of mapping the formed surface to a plane such that the area
remains constant.

Two fundamental characteristics motivate the algorithm: 1) a
procedural reversal of the forming process from the formed to the
unformed state and 2) a geometric conservation of area between the
two states. In effect, the algorithm transforms or “unstamps” the
formed three-dimensional geometry into an initial planar shape.
Variational geometry principles (Light and Gossard, 1981; Lin
et al., 1981) are employed to derive a robust and efficient algo-
rithm for the mapping. Area constraint equations limiting the de-
grees of freedom of points on the deformed surface are used to
map each point to a feasible location in the plane containing the
blank. Since the formulation is linear, the results are accurate
and computational effort increases in linear proportion to the
number of surface elements that are being transformed. A geo-
metrically feasible solution is obtained to give the designer an
assessment of initial blank shape, trim line and material flow
during the forming process.

The basic assumptions underlying the constant area transforma-
tion algorithm are summarized as follows:

* The surface is represented by a grid of points (vertices) which
are considered as the elemental surface entities.

* Elemental area entities (triangles) are formed from any three
mutually adjacent non-collinear vertices.

« The surface is subjected to a state of plane stress only.

« The surface is continuous, homogenous and isotropic.

* Only plastic deformation is considered.

* The surface has no thickness.

SURFACE GEOMETRY REPRESENTATION

Contemporary computer-based design tools provide several
methods for generating parametric sculptured surface models. The
most common representation scheme is the non-uniform rational B-
splines (NURBS) surface. A B-spline surface can be represented as

m n
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where S(u,v) is a three dimensional vector function of control
points P;; arranged in an (m +1) x (n+ 1) topologically rectan-
gular grid and N; (u) and N; (v) are the degree k and / B-spline basis

functions, respectively (Piegl and Tiller, 1987).
A well-defined homogenous triangulation of the surface is re-
quired as the input to the algorithm. Any surface S(u,v) can be ap-
proximated by a faceted polyhedron, defined by a (M x N) set of




three dimensional vertices V;;=S(u;v;), i=1,.., M and j=1,..., N.
The resulting polyhedron approximates the actual surface. Such a
polyhedral approximation can be constructed with a specific topo-
logical structure to algorithmically exploit vertex adjacency rela-
tionships. The nature of this topology depends on the method of
surface discretization. In this application, the surface is triangulated
in uniform parametric intervals to form a topologically rectangular
mesh, which, after mapping through S(u, v) generates a uniform
network. The topology of the network is constructed such that any
internal vertex has exactly eight surrounding vertices as shown in
Figure 1. The polyhedral surface model is stored in a data structure
which distinguishes the topological and geometric information. In
particular, a vertex adjacency list is created to establish connectivi-
ty between each vertex and its neighbors.

Figure 1 . DISCRETIZED SURFACE MODEL WITH
VERTEX ADJACENCY RELATIONSHIPS AND NUM-
BERING SYSTEM.

One useful characteristic of an underlying parametric surface
representation is the inherent separation of the topological and geo-
metric information. Any surface vertex in Euclidean space has a
dual in the parametric domain (i.e., the uv-space). Since the topolo-
gy of the discrete surface approximation is defined in the parameter
space, operations which require adjacency information are simpli-
fied. The corresponding geometric information is thus referenced
primarily for the area calculations. This separation leads to simple
and efficient algorithmic implementation.

DATA STRUCTURE

The information content for the algorithm is reduced to a vertex
basis. The topological information for each vertex is stored in the
form of a linked list containing pointers to the addresses of its
neighbors. The data structure storage requirements are as follows:

Topological information

Vertex to Vertex adjacency list 8 records
Geometric information

Three-dimensional coords of each vertex 3 records

Two-dimensional coords (to be generated) 2 records
Visit Flag

Vertex transformation status indicator 1 record
Total (for each vertex) = 14  records
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ALGORITHM BASIS

Any triangle in three dimensions encloses an area on a plane. The
constant area transformation is formulated such that both the topol-
ogy and the area of a triangle are conserved when it is mapped from
a three dimensional Euclidean space (E3) to a two dimensional pla-
nar space (E2). In particular, let

V3= (V) V,,Vy|V,e BV, 2V, 2V,} @
be a set of 3-tuples which define unique triangles in E>, and
3 N ’ ’ ’ ’ 2 ’ 4 "’
P _{Vl,VZ,V3|V‘.eE,V1$V2¢V3} 3)

be a set of 2-tuples which define triangles on a plane in Ec s,
The constant area transformation is defined as a mapping:

CAT = V3 = P? such that for any a € V3,
CAT (@) = B e P AreaP = Area (),
Top (B) =Top (o)

where Area() and Top() represent the area and topological state, re-
spectively, of any triangle. A geometric interpretation of the con-
stant area transformation can be summarized by the following
principles:

* Given the location of two vertices V’; and V’;, a family of tri-
angles T(V’;, V’;, V) of area A is defined by the area locus [ of
the point V; which is a line parallel to V’;V’; at a distance
h = 2A/|V’iV’j| from V’;¥’;. (See Figure 2.)

)

Figure 2 . LOCUS OF THE THIRD VERTEX OF A
FAMILY OF CONSTANT AREA TRIANGLES.

* Given two adjacent triangles T,(V;, V; V) and T,(V,, V,
V) € E3 and corresponding projected locations of any three of
these vertices in a plane in E2, say V', V', and V‘,, as shown in
Figure 3, if the unknown common vertex ",’ e E? is located at the

intersection of area loci [, «T, (V’, V'j, V') and
LT, (V' V', V), then
Area(V,V,V) =Area(V', V', V') and
d 4 i ®)

Area(V,V,V) =Area (V’k, v, V'l)

These principles, although similar in spirit to those developed by
Chu (1983), provide for several enhancements with respect to algo-
rithmic implementation and computational accuracy. For example,
as illustrated in Figure 4, Chu’s constant area transformation pro-



Figure 3. AREA CONSERVATION PRINCIPLE.

vides an approximate solution for the location of the fourth point of
a mapped quadrilateral. Given the location of three vertices V;, V;
and V on adjacent triangles and their images V;’, V;’and ¥}’ on a
plane, Chu’s method assumes that

Area(V, Vj, V) = Area(V’, V’j, V'k) (6)

Thus the area change due to the mapping of the quadrilateral (V;, V;,
V), V}) is assumed to be accounted for completely in the image of
the triangle (Vy, V;, V). The effect is approximated by constructing
the three loci:

LeT (V' V’j, V',
LeT,(V,V,V),
Iy Ty (V') V'J, V),
assuming, Area(V’, V’f V') =Area (Vk, Vj’ Vl) 3
assuming, Area(V', V', V') =Area(V,, Vj’ Vj)

(a)

Figure 4 . METHODOLOGY FOR MAPPING THE
FOURTH VERTEX OF A QUADRILATERAL (CHU et al.,
1985).

as shown in Figure 4b. Vertex V”;is taken as the centroid of the area
enclosed by /;, I, and I3 as shown in Figure 4c. This solution is ob-
viously approximate due to the assumptions used to construct /; and
1, and the fact that /5 completely neglects any actual area change in
the triangle (V;, V;, V). Since this formulation is this basis of the
algorithm to map an entire surface, the error induced by this approx-
imate solution is compounded because, in general, V;, V;and V are
themselves calculated via the same procedure.

Another limiting aspect of Chu’s formulation is the requirement
of imposed boundary conditions necessary to initialize the algo-
rithm. An orthogonal frame of reference along approximate planes
of part symmetry must be established on the surface prior to the
mapping. This frame is chosen such that the image of the vertices
which lie on them can move only along axes formed from the inter-
section of the blank plane and the symmetry planes, as shown in
Figure 5. Boundary conditions are user-defined, such that the
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Figure 5. BOUNDARY CONDITIONS FOR MAPPING
(CHU ET AL., 1985).

boundary vertices of any two sides of the surface are fixed and iden-
tified along the reference frame. Both the symmetry reference
frame and the boundary conditions impose restrictions on the mate-
rial flow which, in general, do not reflect an accurate model of the
forming process. The present work, however, derives its methodol-
ogy from the forming process directly. The surface is assumed to be
constrained equally along all edges to provide a restricted inflow of
material. In the geometric context, this equates to a “boundary-less”
or free-form deformation, since forces (equal along all edges) are
not interpreted geometrically. This characteristic of the algorithm is
described in detail on the following two sections.

The following terminology is used in the remainder of the chap-
ter to facilitate the description of the constant area transformation
algorithm:

N Total number of vertices on the surface

Vi Address of a specific vertex, i and j corre-
spond to surface parametric direction u
and v.

Adj(Vy) Vertex adjacency list for each V;

Vert3D(V ) Three-dimensional coordinates of vertex
Vi

FIag(V,-j) 1 - if vertex V;; is transformed, O - other-
wise




Vert2D(V ;) Two dimensional coordinates of the ver-

tex V;;

Primary Neighbors Vertices in Adj(V;;) which are topologi-
cally adjacent to V;; in parameter space,
e, Vigjp Vierp Vijeo Vi

Secondary Neighbors ~ Other vertices in the Adj(V;) list

Visit_List List of vertices to visit

TRANSFORMATION INITIALIZATION

Without lack of generality, the algorithm assumes that the blank
plane is the global XY plane and the punch travels parallel to the Z
axis. Since thinning is assumed negligible in an ideal forming pro-
cess, the point of initial punch contact on the blank will most likely
lie in the vicinity of the formed surface point which is furthest from
the blank plane. Thus, the vertex with the largest Z-value, V,,,,,, on
the interior of the surface is taken as the reasonable starting point
for the mapping. To reverse the forming process, “un-forming” of
the surface from this initial point creates the effect of reversing the
flow of material from the final state to the initial state. (In actual
formed products distinct point peaks on the formed surface may not
exist, instead a plateau of surface points at the maximum height can
be found.) To mimic the uniform inflow of material to form a final
surface, a uniform reverse outflow of area is formulated.

: %
YN
_“ ............. m -
7,
'y (b)

Figure 6 . TRANSFORMATION OF V% AND THE SUR-
ROUNDING PRIMARY NEIGHBORS BY PRESERVING
THE LENGTH OF LINE OF VECTORS v, v, v3 AND v,.

This flow is achieved by allowing the triangular elements to
transform in a concentric manner starting with the vertices immedi-
ately surrounding V,,,, as shown in Figure 6. The transformation is
initiated by projecting V. parallel to the Z-axis, onto the blank
plane. To seed the algorithm, the location of at least two additional
vertices (adjacent to V,,,.) on the blank plane are required. Howev-
er, the boundary-less deformation assumption implies a uniform
flow of area toward all surface edges. Thus, the locations of the four
primary neighbors of V,,,, on the blank plane are required. To map
the primary neighbors, area preservation techniques cannot be ap-
plied, since V,,,, is the only vertex identified on the plane. There-
fore, a length of line preservation procedure is adopted as shown in
Figure 6. Unit vectors, formed between V,,,, and each of its prima-
ry neighbors are projected on the blank plane parallel to the Z-axis.
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The locations for the primary neighbors on the blank plane are ap-
proximated by scaling the two-dimensional vectors to their original
three-dimensional length.

Algorithm. Transform initial primary neighbor vertices
Input:v,,,.
Output: primary neighbor Vert2D images of Y
{
calculate the primary neighbor vectors
calculate the lengths of the vectors
normalize the vectors and project on the
blank plane
scale 2D vectors to 3D lengths
calculate primary neighbor vert2D point
images
return point images
}

The remaining vertices of the surface are then transformed by
visiting each vertex and inspecting its neighbors. Each vertex is

Algorithm. Vertex map feasibility
Input: v;;

Output: vertex map feasibility
MAPPED_NEIGHBORS=0

{
forall vV, e Adj(V,)
{
if (Flag(V,) = VISITED)
{
add V, to Mapped_list (V)
increment MAPPED_NEIGHBORS
}
}
if ( MAPPED_NEIGHBORS > 3)
{

if at least three consecutive vertices V,,
V,e Mapped list (V,; j) are VISITED

return vertex CAN BE MAPPED

else return vertex CANNOT BE MAPPED

}
else return vertex CANNOT BE MAPPED




initially checked for mapping status. If the vertex has not been
mapped, the algorithm searches the vertex adjacency list to de-
termine whether at least three adjacent vertices have already
been mapped. If the criterion is met, the routine returns that the
vertex CAN BE MAPPED. Otherwise the function returns that
the vertex CANNOT BE MAPPED.

A vertex which meets the criterion for mapping is mapped ac-
cording the area conserving hypothesis. Depending upon the num-
ber of starting peaks, there may be more than three mapped
neighbors surrounding the vertex which is queried. The solution
methodology for the various cases are discussed in the following
section.

MOVING FRONT AREA CALCULATION TECHNIQUES

In the general multi-peak implementation, cases will arise in
which more than the minimum of three mapped neighboring verti-
ces exist for mapping. In other words, the vertex to be mapped is
part of one or more moving fronts and its position is affected by its
mapped neighbors due to the area constraint. Extra vertices are
eliminated to reduce the problem to a three-vertex case by viewing
the vertex and its neighborhood in topological space. The solution
procedure for the specific cases are discussed here.

Four adjacent neighbors

Consider the case as shown in Figure 7. For vertex P, neigh-
bors 7, 0, I and 2 are already mapped. Overhanging neighbor
Vertex 7 is eliminated from the area loci calculations since it is
not part of any area enclosing triangle in the topological neigh-
borhood of P. The elimination of the overhanging neighbor pre-
vents this imbalance. An alternative approach is to consider the
area contribution of triangle T(7, 2, 0) in addition to T(0, 2, 1).
However, the experimentation with such a formulation revealed
that it can induce an undesirable imbalance in the overall map
due to the non-uniform attractive and repulsive area compo-
nents. The problem is thus reduced to the three-vertex case
which is solved using the principles explained in the preceding
sections.

Figure 7 . FOUR NEIGHBOR CASE. VERTICES 7, 0, 1
AND 2 ARE MAPPED.

Fi ] t neighbo

Two types of neighborhood arrangements are possible as shown
in Figure 8 and Figure 9. In both cases, all the surrounding mapped
neighbors are involved in the area calculation since they constitute
area enclosing triangles in the topological neighborhood of P. As

5 D3 s Hei ol
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& 2 " P 2
7 0 1 7 0 1

Figure 8 . FIVE-NEIGHBOR CASE. TYPE A, REDUCES
TO A THREE-VERTEX CASE BY CONSIDERING VER-
TICES 6, 0 AND 2.

shown in Figure 8, the five-vertex case reduces to a three vertex
case with adjacent triangles T (6, 0, P) and T,(0, 2, P).The nominal
area loci formulation is modified to account for the change in total
area due to the projection of triangles 7(6,7,0) and 7(0,1,2). For ex-
ample, the area used to determine area locus I, is taken as,

A12 = Area (6,0,P) + [Area(6,7,0) —Area(6’,7°,0)] (7)

The formulation for area locus /; is modified in a similar manner.
This modification ensures that constant area is maintained between
P and its mapped neighbors. The second type of five-neighbor case
is shown in Figure 9. This case is more complicated since it in-
volves included areas in different planes. In this case, a pseudo ver-
tex (V) is calculated to reduce this case to a similar variation of the
standard three-vertex problem (Nair, 1993).

Figure 9. FIVE NEIGHBOR CASE. TYPE B, REDUCES
TO A THREE-VERTEX CASE BY CONSIDERING VER-
TICES 7, Vp AND 3.




Six adj t neight

This situation is reduced to a five-vertex case by eliminating one
overhanging neighbor for the same reason as the four adjacent
neighbors case. Then the five-vertex technique is employed as
shown in Figure 10.

0 1

7
Figure 10 . SIX NEIGHBOR CASE. REDUCED TO A
FIVE NEIGHBOR CASE.

Seven adjacent neighbors

This is similar to type A of the five-vertex case shown in the Fig-
ure 11. The case is easily reduced to a three vertex case by consid-
ering two adjacent triangles enclosed by vertices 5, 0, 3 and sharing
P as shown in Figure 18. To preserve area, the net area components
of the triangles indicated by the shaded areas are added to the area
loci calculation for determining vertex P.

7 0 1

0
Figure 11 . SEVEN NEIGHBOR CASE. THE PROBLEM
IS REDUCED TO A THREE VERTEX CASE BY CON-
SIDERING VERTICES 5, 0 AND 3.

VERTEX MAPPING

This is the kernel of the algorithm. Prior to this step, all the vertex
manipulations are done in the topological space. In this segment of
the algorithm, the geometric data is accessed and the area calcula-
tions are performed.
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Algorithm. Map vertex
Input: Vj; and three neighboring mapped vertices.
Output: Vert2D image of Vj;
{
calculate the area enclosed by the vertices in
three-dimensional space
calculate 2D triangle base lengths
calculate area locus of Vj; from each of the two
adjacent triangles
calculate Vert2D(V)) = intersection of the two
loci
return Vert2D(Vj) coordinates
}

MAPPING REMAINING VERTICES

After the first vertex and its primary neighbors are mapped, the
remaining vertices are scanned by generating a visit list which is
initialized with the addresses of the primary neighbors. Primary
neighbors of each element of the visit list are queried for mapping
via the Vertex map feasibility algorithm. Those which can be
mapped, are mapped and appended to the visit list. The algo-
rithm proceeds in this manner until the visit list is exhausted.
The algorithm structure follows.

Algorithm. Map remaining vertices
Input: Initialized visit_list with primary neighbors of
(Vimax)
Output: Vert2D coordinates of all vertices of the surface
forall V, e visit_list
{
for all primary neighbors of Vi
{
query = Vertex Map Feasibility(Adj(Vy))
if query = CAN_BE_MAPPED
{
Map_the_Vertex(Adj(Vy))
add Adj(V, ) to the visit_list
}
}
}




MAPPING EXAMPLES

Two example applications are presented which demonstrate con-
stant area transformation of surfaces with single peak vertices.
Computation times reported reflect implementation on a Silicon
Graphics Indigo workstation with 4§MB of RAM.

Example 1: Bezier surface. The fan shaped bicubic Bezier
surface shown in Figure 12 was represented by a 40 by 40 paramet-
ric subdivision to yield 1600 vertices on the tessellated surface. The
mapping was performed and the result is shown in Figure 13. The
mapping of the surface was well defined and showed fairly uniform
material flow over the entire surface. An increase of the parametric
sampling produced the same result in slightly greater detail. The
computation times for two surface discretization densities are
shown in Table 1. As expected, the computation time grew in linear
proportion to the number of vertices used to represent the surface.
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Figure 13 . EXAMPLE 1: MAPPED SURFACE, 40 BY
40 PARAMETRIC SUBDIVISION

Example 2: B-spline surface. This example is a more compli-
cated B-spline surface of a toy model sports car body. This surface
is characterized by a single peak, flanged edges and multiple peaks
at local maxima as shown in Figure 14. This surface was chosen to
study the behavior of the algorithm in the regions of flanges which
the previous geometric method developed by Chu (1983), could not
handle. A 40 by 40 grid of surface points was generated and the al-
gorithm was applied to this surface definition. The result is shown
in Figure 15. The algorithm produced very interesting results for the
surface. On visual inspection, the material outflow correlated with
the probable material inflow during actual forming operation. The
mapping showed a slight bunching of the grid elements in the lower
most edge of the surface near the front of the car body. This corre-
sponds to a region of complex curvature on the original surface,
thereby signifying that the edge will have severe compressive forc-
es acting on it, resulting in possible wrinkles. The remaining por-
tion of the surface showed no severe area distortion. The
computational results for the surface are summarized in Table 1.
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Figure 14 . EXAMPLE 2: B-SPLINE SURFACE
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Figure 15 . EXAMPLE 2: MAPPED SURFACE, 40 BY
40 PARAMETRIC SUBDIVISION




ROBUSTNESS ISSUES

Numerical degeneracy arises during computation of an intersec-
tion point when the generating area loci are nearly parallel to each
other. Since the basic methodology of the constant area transforma-
tion algorithm is propagation of areas from the center, any numeri-
cal error propagates, resulting in the failure of the algorithm.
Although, this is not a deficiency of the algorithm, the resulting
blank can be influenced considerably by the ability to detect and ac-
commodate this computational error (Nair, 1993). From these and
other tests, it is apparent that the algorithm’s results are accurate for
increased discretization of the design surface. Since the algorithm
is linear time, the technique is computationally inexpensive. This is
a very attractive feature for the algorithm’s implementation as a
general design aid.

Table 1 SURFACE MAPPING RESULTS

— [Example 1: Bezier] Example 2: B- |
Surface spline surface
Discretization| 40 x 40 | 60 x 60 | 40 x 40 | 60 x 60
— m— — m— —=
Computation [\ ) | 190 | 135 | 160
Time (sec)
§
g 3D Area 8.52 8.52 17.66 | 17.70
3
<
@)
S 2D Area 8.52 8.52 17.66 | 17.70
<
Change (%) | 0.0012 | 0.0005 | 0.0140 | 0.0072

CONCLUSION AND FUTURE RESEARCH

The results indicate that this constant area transformation algo-
rithm provides a robust and computationally efficient technique for
press forming blank development. The efficiency of the technique
is due to the fact that geometric feasibility is independent of mate-
rial property. It is interesting to note that other researchers have
reached similar conclusions in considering the manufacturability of
parts comprised of layered composite materials (Tam and Gutows-
ki, 1990; Gutowski et al., 1991). Thus, the simplicity of the under-
lying algorithm and its corresponding linear time complexity make
this constant area technique quite suitable for implementation as an
interactive design aide.

Research related to the constant are transformation is continuing
on several fronts. In fact, the technique developed in this paper was
initially conceived as an ancillary function for sculptured surface
model synthesis (Oliver et al., 1993). Although the constant area
transformation technique has emerged as a useful tool by itself, a
major focus has been to develop a general formability constraint to
be incorporated into the sculptured surface model synthesis tech-
nique (Oliver and Theruvakattil, 1993). As a stand alone design
aide, the constant area transformation algorithm will be enhanced in
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several ways. For example, the method will be extended to accom-
modate more general surface models to handle merging of multiple
fronts from several peaks and stages simultaneously. In addition,
other mapping strategies, such as volume conservation and/or min-
imum energy path, will be investigated. The method can also be ex-
tended to provide a qualitative measure of surface strains. It is
hoped that these additional capabilities will provide a more accurate
assessment of formability for complex surfaces.
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