
 

 

The Hurwicz decision rule’s relationship to decision making with the triangle and beta 

distributions and exponential utility 

By Sarat Sivaprasad and Cameron A. MacKenzie 

Abstract Non-probabilistic approaches to decision making have been proposed for situations in which an 

individual does not have enough information to assess probabilities over an uncertainty. One non-

probabilistic method is to use intervals in which an uncertainty has a minimum and maximum but nothing 

is assumed about the relative likelihood of any value within the interval. The Hurwicz decision rule in 

which a parameter trades off between pessimism and optimism generalizes the current rules for making 

decisions with intervals. This article analyzes the relationship between intervals based on the Hurwicz rule 

and traditional decision analysis using a few probability distributions and an exponential utility functions. 

This article shows that the Hurwicz decision rule for an interval is logically equivalent to: (i) an expected 

value decision with a triangle distribution over the interval; (ii) an expected value decision with a beta 

distribution; and (iii) an expected utility decision with constant absolute risk aversion with a uniform 

distribution. These probability distributions are not exhaustive. There are likely other distributions and 

utility functions for which equivalence with the Hurwicz decision rule can also be established. Since a 

frequent reason for the use intervals is that intervals assume less information than a probability distribution, 

the results in this article call into question whether decision making based on intervals really assumes less 

information than subjective expected utility decision making. 

 

1. Introduction 

Decision analysis helps an individual make better decisions, and these decisions impact the individual’s 

future prospects. Decision trees are a tool to help structure a decision and select an alternative. For each 

branch of the tree extending from an uncertain node, an associated probability quantifies the uncertainty. 

Using probabilities enables the decision tree to be solved by calculating the expected value or expected 

utility of each possible alternative. The probability for each decision tree is defined by a quantitative value. 



 

 

Probability distributions can be assessed using data or expert opinion. Assessing probabilities from 

experts can be difficult and reflect biases (Fischhoff et al. 1982, Hubbard 2009, Fredrickson and Kahneman 

1993, Tversky 1974, Johnson et al. 1993, Tversky and Kahneman 1971). Biases such as representativeness, 

availability, and anchoring and adjustment can lead to incorrect and misjudged probabilities (Tversky and 

Kahneman 1971, Bedford and Cooke 2001). Using probability distributions may also assume more 

information about uncertainty than is warranted. These errors in estimating probabilities can lead to 

overconfidence and a failure to protect against highly consequential risks (Taleb 2007).  

Rather than assuming probabilities when little information is available, making decisions based on 

intervals has been suggested as an alternative (Barker and Wilson 2012, Cao  2014). The interval-based 

approach to decision making defines an uncertainty with a minimum and maximum value and makes no 

assumption about whether any real number within the interval is more or less likely than any other real 

number contained in the interval. An interval-valued decision tree requires assessing the probability of each 

possible interval for an outcome. Barker and Wilson (2012) propose single and multiple objective interval-

valued decision trees where the latter type of decision tree has multiple objectives, each of which can be 

expressed with intervals. The authors provide rules to construct and solve a decision tree where only the 

bounds and not the distributions of uncertain outcomes are known. Cao (2014) extends their work to 

demonstrate that each of Barker and Wilson’s decision rules can be described with the Hurwicz (1952) 

equation. The Hurwicz equation balances pessimism and optimism for a decision maker where a single 

parameter provides a trade-off weight between the minimum and maximum values in an interval.  

This article builds on the previous work on interval-valued decision making by exploring the 

relationship between the Hurwicz decision rule for intervals and prescriptive decision analysis following 

the von Neumman and Morgenstern and Savage axioms. Specifically, this article proves that making a 

decision based on the Hurwicz equation is mathematically equivalent to making a decision based on some 

common probability distributions and/or an exponential utility function. The Hurwicz decision rule can 

always result in the same optimal alternative as an expected value decision maker who assumes a triangle 



 

 

distribution or a beta distribution. The Hurwicz decision rule can also always result in the same optimal 

alternative as a decision maker who uses an exponential utility function and assumes a uniform distribution.  

The significant contribution of this article is that if an individual uses an interval to make a decision 

based on the Hurwicz rule, he or she will get the exact same decision as a risk neutral decision maker using 

a triangle or beta distribution or an expected utility decision maker with constant absolute risk aversion 

using a uniform distribution. As will be discussed in the conclusion, other probability distributions or utility 

functions may also be equivalent to the Hurwicz decision rule. This contribution is important because the 

result calls into question whether making decisions based on intervals really assumes less information than 

traditional prescriptive decision analysis. If an individual is using intervals to select an alternative—for 

which the interval decision rule can be described with the Hurwicz equation—then the individual’s decision 

rule can be mapped to an expected-value decision with a triangle or beta distribution or an expected utility 

decision with constant absolute risk aversion and a uniform distribution.  

This article is organized as follows. Section 2 reviews the debate about assigning probabilities to 

uncertainties with little information and non-probabilistic approaches to decision making. Section 3 

describes interval analysis and the Hurwicz equation. Section 4 proves the relationship between the Hurwicz 

decision rule and the triangle and beta probability distributions and an exponential utility function. Section 

5 provides a numerical example based on Barker and Wilson (2012) for how intervals can be translated to 

probability distributions. Concluding remarks appear in section 6. 

 

2. Literature Review 

Uncertainty has traditionally been categorized into two types (Aven 2010): aleatory (objective) and 

epistemic (subjective). Aleatory uncertainty results from natural variation in a population, and epistemic 

uncertainty results from a lack of knowledge about the system. Ferson and Ginzburg (1996) suggest using 

intervals to model epistemic uncertainty and using probabilities to model aleatory uncertainty. Probability 

theory and interval analysis could be combined by bounding probabilities and analyzing uncertainty using 

all possible probability distributions that satisfy the bounds of an interval.  



 

 

Aleatory and epistemic uncertainties—and distinguishing between them—appear in various fields. 

Der Kiureghian and Ove Ditlevsen (2009) discuss the influence of these two types of uncertainties in 

reliability assessment, risk-based decision making, and codified design. Aleatory and epistemic 

uncertainties have been analyzed in hazardous waste management (Hora 1996), radioactive waste disposal 

(Helton et al. 2011), seismic risk assessments of buildings (Dolšek 2012), power system reliability 

(Billinton and Huang 2008), and nuclear power plants (Rao et al. 2007). Aleatory and epistemic 

uncertainties have also been used in design optimization (Huang and Zhang 2009, Zhang and Huang 2010). 

One critique to representing both aleatory and epistemic uncertainties with probability is that the resulting 

probability distribution will comingle these uncertainties, and a decision maker will not understand if the 

uncertainty is due to aleatory or epistemic uncertainty (Dubois 2010, Aven and Zio 2011).  

Non-probabilistic methods have been proposed to model uncertainty due to ignorance and lack of 

knowledge (i.e., epistemic uncertainty) and to correspond to more naturalistic ways that people think about 

uncertainty. These methods include possibility theory, evidence theory, fuzzy decision making, and interval 

analysis (Helton et al. 2004, 2010). Possibility theory can be used for rare events because little information 

is required, and it offers a qualitative model for epistemic uncertainty (Dubois et al. 2004, Georgescu 2012). 

Possibility theory has been proposed for fuzzy reasoning in decision making and optimization (Carlsson 

and Fuller 2002), in fuzzy cooperative games (Mares 2013), in answer set programming (Bauters et al. 

2015), in fingerprint verification systems (Guesmi et al. 2015), and to model operational risk in finance and 

banking (Chaudhari and Ghosh 2016). 

Evidence theory, developed by Shafer (1976), is based on the idea of belief functions (Kohlas and 

Monney 1994). The Demspter-Shafer mathematical theory of evidence collates information from various 

sources and helps an individual reach a degree of belief that takes into consideration all of the available 

evidence (Maseleno et al. 2015). Evidence theory has been applied to human reliability assessment (Su et 

al. 2015), information fusion (Li et al. 2017), reliability analysis (Zhang et al. 2015, Tang et al. 2015a), 

complex engineering systems (Shah et al. 2015), and in aeronautics (Tang et al. 2015b).  



 

 

Fuzzy decision making categorizes an uncertain outcome into different grades of membership 

(Zadeh 1965, Klir and Yuan 1996). Fuzzy set theory can use intervals by assigning levels of possibilities 

to intervals (Moore and Lodwick 2003, Dubois and Prade 2012). Fuzzy sets for epistemic uncertainty have 

been used in automotive crashes in structural dynamics and to simulate landslide failure in geotechnical 

science and engineering (Hanss and Turin 2010).  

An interval-valued decision trees is a non-probabilistic decision making tool for epistemic 

uncertainties. In an interval-valued decision tree, each uncertain branch of the tree is assigned a probability, 

but the uncertain outcome at the end of the branch is described by an interval. As will be discussed in further 

detail, Barker and Wilson (2012) discuss five decision rules that can be used to solve an interval-valued 

decision tree, and Cao (2014) demonstrates how each of these decision rules can be reduced to the Hurwicz 

(1952) decision rule. Other papers have applied the Hurwicz decision rule to belief functions (Strat 1990) 

and expert systems and intelligent control (Nguyen et al. 1997). Danielson and Ekenberg (2007) present 

algorithms for calculating an optimal value in interval decision trees, and Rodríguez and Alonso (2004) 

propose interval decision trees within dynamic decision contexts. Intervals have been used in some multi-

criteria decision-making methods like TOPSIS (Jahanshahloo et al. 2006), grey theory (Zhang et al. 2005), 

and VIKOR (Sayadi et al. 2009). Lertworaprachaya et al. (2010, 2014) extend interval-valued decision trees 

by creating interval-valued fuzzy decision trees.  

Many decision and risk analysts are skeptical of non-probabilistic approaches to quantify 

uncertainty (Aven and Zio 2011). Probabilities are well understood and established as a proper tool for 

decision making with uncertainty. North (2010) rejects non-probabilistic decision rules such as interval 

analysis and argues that risk analysts should use standard probability theory rather than resorting to other 

methods that are difficult to understand. Howard (1988) argues that long-run frequency concepts are not 

required for probabilities and an individual should assign a probability for an uncertainty that represents 

what he or she believes the long-run frequency would be. 

This article enters into the debate between probabilistic and non-probabilistic approaches to 

decision making by exploring the relationship between decisions based on intervals and traditional 



 

 

prescriptive decision analysis based on subjective probabilities and risk preference. To our knowledge, no 

research has explored to what extent making decisions based on intervals results in the same or different 

decisions based on the expected value of probability distributions or expected utility. If proponents of non-

probabilistic methods suggest methods for making decisions that result in identical decisions to that of 

subjective expected utility, then those proponents should perhaps be willing to use subjective expected 

utility. 

 

3. Background on Making Decisions with Intervals 

In the interval-based approach for decision making, an uncertain outcome has a lower and upper bound, but 

the decision maker has no other knowledge about the outcome. An interval number can be defined as an 

ordered pair of real numbers [𝑎, 𝑏] with 𝑎 ≤ 𝑏. Several approaches have been made to compare two 

intervals, including the mean value of intervals (Dubois and Prade 1987, de Campos Ibáñez and Muñoz 

1989, Ishibuchi and Tanaka 1990, Chanas and Kuchita 1996) and minimum distance measures (Heilpern 

1997, Yao and Wu 2000, Asady and Zendehnam 2007). 

Barker and Wilson (2012) propose five rules for making decisions with intervals. We compare two 

intervals [𝑎, 𝑏] and [𝑐, 𝑑] where 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑 and assume the decision maker prefers to maximize the 

outcome. For each of the five rules, the decision maker should prefer interval [𝑎, 𝑏]  to interval [𝑐, 𝑑]:   

𝑎 > 𝑐 , Worst case rule 

𝑏 > 𝑑, Best case rule 

𝑎 + 𝑏 > 𝑐 + 𝑑, Laplace rule                                                                                    

𝑑 − 𝑎 < 𝑏 − 𝑐, Minimum regret rule 

𝛼𝑎 + (1 − 𝛼)𝑏 > 𝛼𝑐 + (1 − 𝛼)𝑑, Hurwicz’s rule, where 𝛼 ∈ [0,1] 

If 𝑎 > 𝑐 and 𝑏 > 𝑑, then the decision maker should always prefer [𝑎, 𝑏] to [𝑐, 𝑑] for each of the 

five decision rules and for any value of 𝛼 ∈ [0,1] in the Hurwicz rule. Figure 1 depicts such a case for two 

intervals in which [𝑎, 𝑏] can be said to dominate [𝑐, 𝑑] if the objective is to maximize the outcome. 



 

 

Similarly, if 𝑐 > 𝑎 and 𝑑 > 𝑏, the decision maker should always prefer [𝑐, 𝑑] to [𝑎, 𝑏]  for each decision 

rule. (If the both of the greater-than inequalities are replaced with greater-than-or-equal inequalities, the 

preference relationship is a weak preference.) Thus, the mathematical justifications in this article will 

always assume that 𝑐 < 𝑎 < 𝑏 < 𝑑 to avoid the trivial case in which one interval is always preferred over 

another interval. 

Figure 1 Two Intervals in which [𝒂, 𝒃] Dominates [𝒄, 𝒅] 

 

Cao (2014) shows that each of these five decision rules for intervals can be reduced to the Hurwicz 

rule. The decision maker determines 𝛼 based on whether he or she is more optimistic or pessimistic about 

the outcome. The parameter 𝛼 can be defined as the parameter that trades off between the best case 

(optimism) and the worst case (pessimism). The worst case rule corresponds to 𝛼 = 1, the best case rule 

corresponds to 𝛼 = 0, and both the Laplace rule and the minimum regret correspond to 𝛼 = 0.5. Thus, this 

article will focus exclusively on the Hurwicz rule since it covers the other four decision-making rules for 

intervals. 

 

4. Relationship between Hurwicz and Prescriptive Decision Analysis  

This section shows how the Hurwicz rule for decision making results in the same optimal alternative as (i) 

an expected value decision rule with a triangle probability distribution, (ii) an expected value decision rule 

with a beta distribution, and (iii) an expected exponential utility decision rule with a uniform distribution. 

Each of these three instances is addressed separately. Each case compares the intervals [𝑎, 𝑏] and [𝑐, 𝑑] 

where 𝑐 < 𝑎 < 𝑏 < 𝑑 and a decision maker wants to maximize the outcome. The article only demonstrates 

the relationship between the Hurwicz rule and these three cases. There are almost certainly other 

distributions and utility functions which have a similar relationship to the Hurwicz decision rue.  



 

 

The parameter 𝛼 in the Hurwicz equation and the minimum and maximum for an interval are used 

to define corresponding parameters for the triangle and beta distributions. With the selection of the correct 

parameters, making a decision based on maximizing the expected value of these distributions will 

correspond exactly to the decision in the Hurwicz rule. The triangle and beta distributions are chosen 

because both distributions have lower and upper bounds that can correspond to an interval. The skewness 

of these distributions can correspond to the parameter 𝛼.  

Since the expected value of a uniform distribution is the midpoint, the expected value of a uniform 

distribution only results in the same alternative as the Hurwicz rule if 𝛼 = 0.5. The uniform distribution is 

used with an exponential utility function where the risk preference parameter is chosen to align with 𝛼.  

 

4.1. Expected Value with a Triangle Distribution 

In the following discussion, we show that if an uncertain outcome follows a triangle distribution, then the 

expected-value decision rule is equivalent to the Hurwicz decision rule. The triangle distribution is denoted 

𝑇𝑟𝑖(𝑎,𝑚, 𝑏) where 𝑎 is the minimum value, 𝑚 is the mode, and 𝑏 is the maximum value of the distribution. 

It must be true that 𝑎 ≤ 𝑚 ≤ 𝑏. Three different cases exist to define the parameters for the triangle 

distribution based on the intervals [𝑎, 𝑏] and [𝑐, 𝑑] and value of 𝛼 from the Hurwicz equation. If 𝛼 ∈ [
1

3
,
2

3
], 

the modes of the triangle distributions for interval [𝑎, 𝑏] and for [𝑐, 𝑑] are: 

𝑚𝑥  =  2𝑏 − 𝑎 − 3𝛼(𝑏 − 𝑎)    and    𝑚𝑦 =  2𝑑 − 𝑐 − 3𝛼(𝑑 − 𝑐) (1) 

such that 𝑎 ≤ 𝑚𝑥 ≤ 𝑏 and 𝑐 ≤ 𝑚𝑦 ≤ 𝑑.  

If 𝛼 <
1

3
, then using Equation (1) for 𝑚𝑥 and 𝑚𝑦 results in 𝑚𝑥 > 𝑏 and 𝑚𝑦 > 𝑑, which is invalid 

for the triangle distribution. To bracket the mode within the interval [𝑎, 𝑏], we calculate a new minimum 

value for the triangle distribution, 𝑎 , as shown in Figure 2, and set the mode of this triangle equal to 𝑏. In 

order to calculate 𝑎 , the mean of the new triangle distribution is equated to the Hurwicz equation:  

          
𝑎 + 2𝑏

3
= 𝛼𝑎 + (1 − 𝛼)𝑏 (2a) 



 

 

𝑎 = 3𝛼(𝑎 − 𝑏) + 𝑏 (2b) 

The minimum value 𝑐  of the triangle distribution for the interval [𝑐, 𝑑] is calculated in a similar fashion. 

 

 

Figure 2 Bracketing the Mode between a and b when 𝜶 <
𝟏

𝟑
 

 
 

If 𝛼 >  
2

3
, then 𝑚𝑥 and 𝑚𝑦 will result in 𝑚𝑥 < 𝑎 and 𝑚𝑦 < 𝑐 based on Equation (1). Instead, we 

calculate a new maximum value 𝑏  for the interval [𝑎, 𝑏] and set the mode of the distribution equal to 𝑎. In 

order to calculate 𝑏 , the mean of the new triangle distribution is equated to the Hurwicz equation:  

2𝑎+𝑏᷉ 

3
  = 𝛼𝑎 + (1 − 𝛼)𝑏 

            𝑏 = (3𝛼 − 2)𝑎 + 3𝑏(1 − 𝛼) 

(3a) 

(3b) 

We similarly calculate the maximum value 𝑑̃ of the triangle distribution for [𝑐, 𝑑].  

Using these rules for the triangle distribution, if a decision maker is risk neutral and selects the 

alternative that maximizes the expected value of the triangle distribution, the decision maker should always 

select the same alternative as given by the Hurwicz decision rule. The following theorem formalizes and 

proves this result. 

 

Theorem 1: If X and Y are two random variables where each follows a triangle distribution according to 

the following cases: 

Case 1:  
1

3
≤ 𝛼 ≤ 

2

3
   



 

 

𝑋~𝑇𝑟𝑖 (𝑎,𝑚𝑥 , 𝑏) where  𝑚𝑥    =  2𝑏 − 𝑎 − 3𝛼(𝑏 − 𝑎) 

𝑌~𝑇𝑟𝑖 (𝑐,𝑚𝑦, 𝑑) where 𝑚𝑦    =  2𝑑 − 𝑐 − 3𝛼(𝑑 − 𝑐) 

Case 2: 𝛼 <  
1

3
 

𝑋~𝑇𝑟𝑖(𝑎 , 𝑏, 𝑏) where  𝑎 = 3𝛼(𝑎 − 𝑏) + 𝑏 

𝑌~𝑇𝑟𝑖(𝑐 , 𝑑, 𝑑) where 𝑐 = 3𝛼(𝑐 − 𝑑) + 𝑑 

Case 3: 𝛼 > 
2

3
 

𝑋~𝑇𝑟𝑖(𝑎, 𝑎, 𝑏̃) where  𝑏 = (3𝛼 − 2)𝑎 + 3𝑏(1 − 𝛼)          

𝑌~𝑇𝑟𝑖(𝑐, 𝑐, 𝑑̌) where  𝑑 = (3𝛼 − 2)𝑐 + 3𝑑(1 − 𝛼) 

then 𝐸(𝑋) > 𝐸(𝑌) if and only if 𝛼𝑎 + (1 − 𝛼)𝑏 > 𝛼𝑐 + (1 − 𝛼)𝑑 where 𝛼 ∈ [0,1]. 

PROOF. Case 1. First, if 
1

3
≤ 𝛼 ≤

2

3
, then 𝑎 ≤ 𝑚𝑥 ≤ 𝑏 and 𝑎 ≤ 𝑚𝑦 ≤ 𝑏, which means that the 

triangle distributions for 𝑋 and 𝑌 are well defined.  Second, we show that 𝐸(𝑋) > 𝐸(𝑌) if and only if 𝛼𝑎 +

(1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑: 

𝐸(𝑋) > 𝐸(𝑌) 

  
𝑎+𝑏᷉+𝑚𝑥

3
>

𝑐+𝑑+𝑚𝑦

3
    

 
𝑎+𝑏᷉+2𝑏᷉−𝑎−3𝛼(𝑏᷉−𝑎)

3
> 

𝑐+𝑑+2𝑑−𝑐−3𝛼(𝑑−𝑐)

3
 

 3𝑏 − 3𝛼(𝑏 − 𝑎) >  3𝑑 − 3𝛼(𝑑 − 𝑐) 

 𝛼𝑎 + (1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑 

(4a) 

(4b) 

(4c) 

 

(4d) 

(4e) 

Case 2. With the defined values for 𝑎  and 𝑐 , we show that the expected value of 𝑋 is greater than the 

expected value of 𝑌 if and only if the 𝛼𝑎 + (1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑: 

𝐸(𝑋) > 𝐸(𝑌) 

  
𝑎 +𝑏᷉+𝑏᷉

3
 >  

c +𝑑+𝑑

3
 

 
3𝛼(𝑎−𝑏᷉)+3𝑏᷉

3
> 

3𝛼(𝑐−𝑑)+3𝑑

3
 

(5a) 

(5b) 

(5c) 

 



 

 

 𝛼(𝑎 − 𝑏) + 𝑏 >  𝛼(𝑐 − 𝑑) + 𝑑 

 𝛼𝑎 + (1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑 

(5d) 

(5e) 

Case 3. With the defined values for 𝑏̃ and 𝑑̃, we show that the expected value of 𝑋 is greater than the 

expected value of 𝑌 if and only if the 𝛼𝑎 + (1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑: 

𝐸(𝑋) > 𝐸(𝑌) 

   
𝑎+𝑎+𝑏̃᷉

3
 >  

𝑐+𝑐+𝑑̃

3
 

   
2𝑎+(3𝛼−2)𝑎+3𝑏᷉(1−𝛼)

3
> 

2𝑐+(3𝛼−2)𝑐+3𝑑(1−𝛼)

3
 

   
2𝑎+3𝛼𝑎−2𝑎+3𝑏᷉(1−𝛼)

3
> 

2𝑐+3𝛼𝑐−2𝑐+3𝑑(1−𝛼)

3
 

   𝛼𝑎 + (1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑. 

(6a) 

(6b) 

(6c) 

 

(6d) 

(6e) 

Thus, 𝐸(𝑋) > 𝐸(𝑌) if and only if 𝛼𝑎 + (1 − 𝛼)𝑏 > 𝛼𝑐 + (1 − 𝛼)𝑑. End proof. 

 

This result shows that a decision maker who is selecting an alternative based on an interval 

decision-making rule will select the same alternative as a risk-neutral decision maker who assumes that 

each interval follows a triangle distribution according to the above guidelines. If the decision maker using 

an interval with the Hurwicz decision rule does not believe the corresponding triangle distribution is a 

possible representation of the uncertainty, then perhaps the decision maker should question whether he or 

she should use the interval to make a decision based on that value of 𝛼. 

 

4.2. Expected Value with a Beta Distribution 

The previous subsection showed that a triangle distribution with risk neutrality can be formed from an 

interval that will always result in the same optimal alternative as the Hurwicz decision rule. This subsection 

shows that the beta distribution can also be used with risk neutrality and that maximizing the expected value 

of the beta distribution is equivalent to the Hurwicz decision rule. 



 

 

A four-parameter beta distribution is used such that the beta distribution for random variable 𝑋 is 

denoted by 𝐵𝑒𝑡𝑎(𝛼𝑥 , 𝛽𝑥 , 𝑎, 𝑏) where 𝑎 is the minimum value, 𝑏 is the maximum value, and 𝛼𝑥 and 𝛽𝑥 are 

the two traditional parameters for the beta distribution. Increasing  𝛼𝑥   moves the mass of the distribution 

closer to 𝑏 and increasing 𝛽𝑥  moves the mass of the distribution closer to 𝑎.The mean of the beta distribution 

can be equated to the Hurwicz equation to derive the relationship between 𝛼𝑥 and 𝛽𝑥: 

𝛼𝑥𝑏᷉+𝛽𝑥𝑎

𝛼𝑥+𝛽𝑥
  = 𝛼𝑎 + (1 − 𝛼)𝑏 

   𝛽𝑥= 𝛼𝑥 ∗ 
𝛼

1−𝛼
 

(7a) 

(7b) 

Theorem 2: If 2 random variables X and Y follow beta distributions, where 𝑋~ 𝐵𝑒𝑡𝑎(𝛼𝑥 , 𝛽𝑥 , 𝑎, 𝑏) and ~ 

𝐵𝑒𝑡𝑎(𝛼𝑦, 𝛽𝑦, 𝑐, 𝑑), and where 

βx= αx ∗ 
α

1−α
 (8) 

𝛽𝑦= 𝛼𝑦 ∗ 
𝛼

1−𝛼
 (9) 

then 𝐸(𝑋) > 𝐸(𝑌) if and only if 𝛼𝑎 + (1 − 𝛼)𝑏 > 𝛼𝑐 + (1 − 𝛼)𝑑 where 𝛼 ∈ [0,1]. 

 PROOF. To prove this, it suffices to show that expectation of X is greater than the expectation of Y 

if and only if 𝛼𝑎 + (1 − 𝛼)𝑏 >  𝛼𝑐 + (1 − 𝛼)𝑑:  

𝐸(𝑋) > 𝐸(𝑌) 

 
𝛼𝑥𝑏᷉+𝛽𝑥𝑎

𝛼𝑥+𝛽𝑥
  >   

𝛼𝑦𝑑+𝛽𝑦𝑐

𝛼𝑦+𝛽𝑦
 

 
 𝛼𝑥𝑏᷉+𝛼𝑥 ∗ 

𝛼

1−𝛼
𝑎

𝛼𝑥+𝛼𝑥 ∗ 
𝛼

1−𝛼

  >   
𝛼𝑦𝑑+𝛼𝑦 ∗ 

𝛼

1−𝛼
𝑐

𝛼𝑦+𝛼𝑦 ∗ 
𝛼

1−𝛼

 

𝛼𝑎 + (1 − 𝛼)𝑏 > 𝛼𝑐 + (1 − 𝛼)𝑑 

(10a) 

(10b) 

 

(10c) 

(10d) 

End proof. 

 

The result for this beta distribution is similar to that of the triangle distribution. A decision maker 

who selects an alternative based on an interval decision-making rule will always select the same alternative 

as risk-neutral decision maker who assumes that each interval follows a beta distribution. If the decision 



 

 

maker does not believe the corresponding beta distribution is a possible representation of the uncertainty, 

then the decision maker should be leery of using the interval to make a decision based on that value of 𝛼. 

 

4.3. Expected Utility with Constant Absolute Risk Aversion with a Uniform Distribution 

The decision rules for the triangle and beta distributions assume a risk neutral decision maker, and the 

skewness of each distribution provides a means to mirror the influence of 𝛼 in the Hurwicz equation. This 

subsection provides a slightly different approach by employing an exponential utility function to capture 

the influence of 𝛼 via the risk preference coefficient. 

A utility function can represent the decision maker’s attitude towards uncertainty. Many utility 

functions are possible, but we utilize an exponential utility function for any real number 𝑧:  

𝑈(𝑧) = {

1 − 𝑒−𝛾𝑧

𝛾
, if 𝛾 ≠ 0

𝑧, if 𝛾 = 0

    

 

(11) 

where 𝛾 is a parameter describing an individual’s risk preference (Arrow 1965, Pratt 1964). Exponential 

utility assumes a constant absolute risk aversion, which means that an individual’s risk attitude remains 

constant for all wealth values (Arrow 1965). A risk averse individual has a concave utility function if 𝛾 >

0, and a risk seeking individual has a convex utility function if 𝛾 < 0 (Chelst and Canbolat 2011).  

If intervals [𝑎, 𝑏] and [𝑐, 𝑑] follow a uniform distribution, the expected utility with constant 

absolute risk aversion of each uncertain outcome can be calculated. This article will continue to assume an 

exponential utility function with constant absolute risk aversion when calculating expected utility. Other 

utility functions may be also be possible, as will be discussed later in the article. A uniform distribution is 

a natural probabilistic representation for an uncertain interval in part because uniform, or equal, 

probabilities maximize the entropy of a discrete uncertainty when no other information is available (Jaynes 

1957, Abbas 2006). Entropy is the amount of information necessary to describe the realizations of a discrete 

random variable (Shannon 1948).   



 

 

An expected utility decision maker should prefer [𝑎, 𝑏] and [𝑐, 𝑑] if and only if the expected utility 

of [𝑎, 𝑏], 𝐸𝑈([𝑎, 𝑏]), is greater than the expected utility of [𝑐, 𝑑], 𝐸𝑈([𝑐, 𝑑]). Mathematically, this can be 

expressed as: 

𝐸𝑈([𝑎, 𝑏]) − 𝐸𝑈([𝑐, 𝑑]) =

{
 

 
(𝑑 − 𝑐)[𝑒−𝑏᷉𝛾 − 𝑒−𝑎𝛾] − (𝑏 − 𝑎)[𝑒−𝑑𝛾 − 𝑒−𝑐𝛾]

𝛾2(𝑏 − 𝑎)(𝑑 − 𝑐)
, if 𝛾 ≠ 0

𝑎 + 𝑏 − 𝑐 − 𝑑

2
, if 𝛾 = 0.

 

 

(12) 

where the respective intervals follow a uniform distribution and the utility is an exponential utility function 

as given in Equation (11). 

We desire a function that maps 𝛼 from the Hurwicz equation to 𝛾 in the exponential utility function 

in order that given a value of 𝛼, there is a unique value of 𝛾 that will result in equivalent decisions. In other 

words, Equation (12) should be greater than 0 if and only if  𝛼𝑎 + (1 − 𝛼)𝑏 > 𝛼𝑐 + (1 − 𝛼)𝑑. 

In order to arrive at such a function, we first define the Hurwicz indifference parameter. If a 

decision maker is indifferent between intervals [𝑎, 𝑏] and [𝑐, 𝑑] then according to the Hurwicz decision 

rule, it must be true that 𝛼𝑎 + (1 − 𝛼)𝑏 = 𝛼𝑐 + (1 − 𝛼)𝑑 for some value of 𝛼 ∈ [0,1]. We use this equality 

to make the following definition. 

Definition: The Hurwicz indifference parameter 𝛼∗ = 
𝑑−𝑏᷉

𝑎−𝑏᷉+𝑐−𝑑
 is the value of 𝛼 such that a decision maker 

is indifferent between [𝑎, 𝑏] and [𝑐, 𝑑]. 

From this definition, it is clear that 𝛼∗𝑎 + (1 − 𝛼∗)𝑏 = 𝛼∗𝑐 + (1 − 𝛼∗)𝑑. If 𝛼 > 𝛼∗, the decision 

maker should prefer [𝑎, 𝑏] over [𝑐, 𝑑] and if 𝛼 < 𝛼∗, the decision maker should prefer [𝑐, 𝑑] over [𝑎, 𝑏]. 

The Hurwicz indifference parameter is used to establish 𝛾 in the exponential utility function. 

Figure 3  Relationship between 𝜶 and 𝜸 



 

 

 
 

If 𝛼 = 0, the Hurwicz decision rule is equivalent to an extreme risk-seeking decision maker who 

makes a decision based on the maximum value of each uncertain outcome, and 𝛾 → −∞. If 𝛼 = 1, the 

Hurwicz decision rule is equivalent to an extreme risk-averse decision maker who only focuses on the 

minimum outcome, and 𝛾 → ∞. The risk neutral situation implies that 𝛾 = 0, which is identical to 𝛼 = 0.5. 

Thus, if 0 < 𝛼 ≤ 0.5, then it should be true that −∞ < 𝛾 ≤ 0, and if 0.5 ≤ 𝛼 < 1, then it should be true 

that 0 ≤ 𝛾 < ∞. We express 𝛾 as a function of 𝛼 that obeys these conditions: 

𝛾(𝛼) = {

𝑡(2𝛼 − 1)

𝛼
, if 0 < 𝛼 ≤ 0.5

𝑡(2𝛼 − 1)

1 − 𝛼
, if 0.5 < 𝛼 < 1

 

 

(13) 

where 𝑡 > 0 is a parameter that needs to be determined. Figure 3 displays this function. 

The other condition that needs to be satisfied, which will determine the value of 𝑡, is as follows. If 

𝛼 = 𝛼∗ (the Hurwicz indifference parameter), then it should be true that 𝛾 = 𝛾∗ where 𝛾∗ is the risk 

preference parameter such that the expected utility of [𝑎, 𝑏] equals the expected utility of [𝑐, 𝑑]. Substituting 

this condition into Equation (13) results in the following parameterization of 𝑡:  

𝑡 =

{
 
 

 
 

𝛾∗𝛼∗

2𝛼∗ − 1
 ,             if 0 ≤ 𝛼 ≤ 0.5, 𝛼∗ ≠ 0.5

𝛾∗(1 − 𝛼∗)

2𝛼∗ − 1
, if 0.5 < 𝛼 ≤ 1, 𝛼∗ ≠ 0.5

1 ,                if 𝛼∗ = 0.5              

 

 

(14) 



 

 

Using this expression for 𝑡 in the function 𝛾(𝛼) in Equation (13) will result in a utility function such that 

the expected utility of [𝑎, 𝑏] is greater than the expected utility of [𝑐, 𝑑] if and only if the decision maker 

prefers [𝑎, 𝑏] according to the Hurwicz equation. The following two lemmas help to prove that assertion. 

Lemma 1. Given some value 𝛾 ∈ ℛ and 𝑑 > 𝑏 > 𝑎 > 0, 

𝑑[𝑒−𝑏᷉𝛾 − 𝑒−𝑎𝛾] − (𝑏 − 𝑎)[𝑒−𝑑𝛾 − 1]

𝛾2(𝑏 − 𝑎)𝑑
< 0 

(15) 

for all 𝛾 ≤ 𝛾. 

 PROOF. If we find one value of 𝛾 and show that Equation (15) is valid for all 𝛾 ≤ 𝛾, that completes 

the proof. First, let 

𝛾 = −
log (

𝑑
𝑏 − 𝑎

)

𝑑 − 𝑏
 

 

(16) 

Since 𝑑 > 𝑏 > 𝑎, then 𝛾 < 0. This implies that   𝑑𝑒−𝑏᷉𝛾̂ − (𝑏 − 𝑎) 𝑒−𝑑𝛾̂ = 0. Since 1 < 𝑒−𝑏᷉𝛾 < 𝑒−𝑑𝛾 for 

all 𝛾 < 0, then it must be true that 𝑑𝑒−𝑏᷉𝛾 − (𝑏 − 𝑎) 𝑒−𝑑𝛾 < 0 for all 𝛾 < 𝛾.  

Second, let  

𝛾1 = −
log (

𝑏 − 𝑎
𝑑

)

𝑎
 

 

(17) 

Since 𝑒−𝑎𝛾 is a strictly decreasing function, it must be true that 𝑏 − 𝑎 < 𝑑𝑒−𝑎𝛾  for all 𝛾 < 𝛾1. Since 𝑑 >

𝑏 > 𝑎, then 𝛾1 > 0. Since 𝛾 < 0, then 𝑏 − 𝑎 < 𝑑𝑒−𝑎𝛾  for all 𝛾 < 𝛾. Thus 0 > 𝑑𝑒−𝑏᷉𝛾 + 𝑏 − 𝑎 −

(𝑏 − 𝑎)𝑒−𝑑𝛾 − 𝑑𝑒−𝑎𝛾   = 𝑑[𝑒−𝑏᷉𝛾-𝑒−𝑎𝛾]−(𝑏 − 𝑎)[ 𝑒−𝑑𝛾-1] for all 𝛾 < 𝛾. End proof. 

 

Lemma 2. The function 𝑓(𝛾) = 𝑑[𝑒−𝑏᷉𝛾 − 𝑒−𝑎𝛾] − (𝑏 − 𝑎)[𝑒−𝑑𝛾 − 1]  has at most one local minimum and 

one local maximum. 

PROOF. We construct a proof by contradiction. Assume 𝑓(𝛾) has either two local minima and one 

local maximum or one local minimum and two local maxima (i.e., three critical points). Then the derivative 

of 𝑓(𝛾)  



 

 

𝑓′(𝛾) = 𝑑[−𝑏𝑒−𝑏᷉𝛾 + 𝑎𝑒−𝑎𝛾] + (𝑏 − 𝑎)𝑑𝑒−𝑑𝛾 = 𝑑𝑒−𝑑𝛾[−𝑏𝑒(𝑑−𝑏᷉)𝛾 + 𝑎𝑒(𝑑−𝑎)𝛾] + (𝑏 − 𝑎)]

=   0 

(18) 

must have at least three solutions because 𝑓(𝛾) is continuous. Since 𝑑𝑒−𝑑𝛾 ≠ 0,  

𝑓′(𝛾) = −𝑏𝑒(𝑑−𝑏᷉)𝛾 + 𝑎𝑒(𝑑−𝑎)𝛾 + (𝑏 − 𝑎) = 0 (19) 

must have at least three solutions. If  𝑓′(𝛾) = 0 has at least three solutions, then it must have at least two 

critical points (one local minimum and one local maximum). The derivative of 𝑓′(𝛾)  

𝑓"(𝛾) = −𝑏(𝑑 − 𝑏)𝑒(𝑑−𝑏᷉)𝛾 + 𝑎(𝑑 − 𝑎)𝑒(𝑑−𝑎)𝛾 = 0 (20) 

must have at least two solutions. But 𝑓"(𝛾) = 0 can be solved directly for 𝛾, and there is a unique solution 

to 𝛾, so 𝑓"(𝛾) = 0 only has one solution. This implies that 𝑓′(𝛾) = 0 has two solutions and 𝑓(𝛾) has only 

two critical points (a local minimum and a local maximum).  End proof. 

 

These lemmas will enable us to prove that there is a unique 𝛾∗ for which the decision maker will 

be indifferent between [𝑎, 𝑏] and [𝑐, 𝑑] according to exponential expected utility. The interval [𝑎, 𝑏] should 

be preferred if  𝛼 > 𝛼∗ and  > 𝛾∗, and the interval [𝑐, 𝑑] should be preferred if  𝛼 < 𝛼∗ and 𝛾 < 𝛾∗.  

Theorem 3: Assume the following: 

1. The intervals [𝑎, 𝑏] and [𝑐, 𝑑] each follow a uniform distribution where 𝑑 > 𝑏 > 𝑎 > 𝑐 

2. 𝛼∗ = 
𝑑−𝑏᷉

𝑎−𝑏᷉+𝑐−𝑑
 

3. 𝐸𝑈([𝑎, 𝑏]) and 𝐸𝑈([𝑐, 𝑑]) represent the expected utility with constant absolute risk aversion 

where 𝛾 is the risk preference parameter 

4. 𝛾∗ is the risk preference parameter such that 𝐸𝑈([𝑎, 𝑏]) = 𝐸𝑈([𝑐, 𝑑]) 

5. The risk preference parameter 𝛾 as a function of 𝛼 ∈ [0,1] is 



 

 

𝛾(𝛼) =

{
 
 
 
 

 
 
 
 

𝛾∗𝛼∗(2𝛼 − 1)

𝛼(2𝛼∗ − 1)
, 0 < 𝛼 < 0.5, 𝛼∗ ≠ 0.5

𝛾∗(1 − 𝛼∗)(2𝛼 − 1)

(1 − 𝛼)(2𝛼∗ − 1)
 , 0.5 ≤ 𝛼 < 1, 𝛼∗ ≠ 0.5

2𝛼 − 1

𝛼
, 0 < 𝛼 < 0.5, 𝛼∗ = 0.5

2𝛼 − 1

1 − 𝛼
 , 0.5 ≤ 𝛼 < 1, 𝛼∗ = 0.5

 

 

 

(21) 

Then 𝐸𝑈([𝑎, 𝑏]) − 𝐸𝑈([𝑐, 𝑑]) > 0 for all 𝛾 > 𝛾∗ if and only if 𝑎 + (1 − 𝛼)𝑏 − 𝛼𝑐 − (1 − 𝛼)𝑑 > 0 for all 

𝛼 > 𝛼∗. 

PROOF. First, we show that 𝐸𝑈([𝑎, 𝑏]) − 𝐸𝑈([𝑐, 𝑑]) is continuous from Equation (12). Using 

L’Hôpital’s rule, the limit as 𝛾 → 0 for the top part of Equation (12) is: 

lim
γ→0

 
(𝑑 − 𝑐)[𝑒−𝑏᷉𝛾 − 𝑒−𝑎𝛾] − (𝑏 − 𝑎)[𝑒−𝑑𝛾 − 𝑒−𝑐𝛾]

𝛾2(𝑏 − 𝑎)(𝑑 − 𝑐)
  

= lim
γ→0

 
(𝑑 − 𝑐)[−𝑏𝑒−𝑏᷉𝛾 + 𝑎𝑒−𝑎𝛾] − (𝑏 − 𝑎)[−𝑑𝑒−𝑑𝛾 + 𝑐𝑒−𝑐𝛾]

2𝛾(𝑏 − 𝑎)(𝑑 − 𝑐)
 

= lim
γ→0

 
(𝑑 − 𝑐)[𝑏2𝑒−𝑏᷉𝛾 − 𝑎2𝑒−𝑎𝛾] − (𝑏 − 𝑎)[𝑑2𝑒−𝑑𝛾 − 𝑐2𝑒−𝑐𝛾]

2(𝑏 − 𝑎)(𝑑 − 𝑐)
 

=
(𝑏 + 𝑎) − (𝑑 + 𝑐)

2
 

(22a) 

 

(22b) 

 

(22c) 

 

(22d) 

which is equivalent to the difference in expected utility when 𝛾 = 0 in Equation (12). 

To prove the theorem, we next show that 𝛾∗ exists and that it is unique. Without loss of generality, 

we can assume that 𝑐 = 0 and all the other variables would be similarly scaled so that 𝑑 > 𝑏 > 𝑎 > 0. This 

is valid because of the “delta” or constant absolute risk aversion property for exponential utility (Brockett 

and Golden 1987). Thus, the difference in expected utilities can rewritten as: 

𝐸𝑈([𝑎, 𝑏]) − 𝐸𝑈([0, 𝑑]) =

{
 

 
𝑑[𝑒−𝑏᷉𝛾 − 𝑒−𝑎𝛾] − (𝑏 − 𝑎)[𝑒−𝑑𝛾 − 1]

𝛾2(𝑏 − 𝑎)𝑑
, if 𝛾 ≠ 0

𝑎 + 𝑏 − 𝑐 − 𝑑

2
, if 𝛾 = 0

 

 

(23) 

From Lemma 1, we know that Equation (23) is less than 0 as 𝛾 → −∞. As 𝛾 → ∞, 𝑑[𝑒−𝑏᷉𝛾 − 𝑒−𝑎𝛾] −

(𝑏 − 𝑎)[𝑒−𝑑𝛾 − 1] → 𝑏 − 𝑎 so the numerator is positive for large values of 𝛾. Since the denominator is 



 

 

always positive, Equation (23) is greater than 0 for large values of γ. Since Equation (23) is continuous, 

there must be at least one point when Equation (23) equals 0 and this proves the existence of at least one 

𝛾∗ where 𝐸𝑈([𝑎, 𝑏]) = 𝐸𝑈([0, 𝑑]). 

If 𝛾∗ is not unique (i.e., Equation (23) has more than one root), then there must be at least three 

roots for Equation (23). This is true because Equation (23) is less than 0 for 𝛾 → −∞ and Equation (23) is 

greater than 0 as 𝛾 → ∞. 

If Equation (23) has at least three roots, then Equation (23) must have at least one local minimum 

and two local maxima because the limit of Equation (23) as 𝛾 → ∞ equals 0. From Lemma 2, the numerator 

of Equation (23) has at most one local minimum and one local maximum. This implies that Equation (23) 

has at most one local minimum and one local maximum, so Equation (23) cannot have more than two roots. 

However, we know that Equation (23) cannot have two roots. Thus, Equation (23) has exactly one root and 

𝛾∗ is a unique value. 

It is clear from 𝛾(𝛼) in Equation (21) that 𝛾 = 𝛾∗ if and only if 𝛼 = 𝛼∗;  𝛾 > 𝛾∗ if and only if 𝛼 >

𝛼∗; and 𝛾 < 𝛾∗ if and only if 𝛼 < 𝛼∗. Since Equation (23) is less than 0 as 𝛾 → −∞, then Equation (23) is 

less than 0 for all 𝛾 < 𝛾∗. Since Equation (23) positive for large values of 𝛾, then Equation (23) is greater 

than 0 for all 𝛾 > 𝛾∗. End proof. 

Theorem 3 signifies that if a decision maker chooses between two alternatives on the basis of 

intervals, that decision problem is equivalent to a problem with an exponential utility function in which 

each of the intervals follows a uniform distribution. The risk preference parameter in the exponential utility 

function can reflect the same trade-off between pessimism and optimism as in the Hurwicz equation. 

 

5. Illustrative Example 

Wilson and Barker (2012) illustrate the interval-valued decision tree approach for a maintenance, repair, 

and overhaul (MRO) example based on the aging U.S. Air Force fleet. Many airplanes’ useful lives have 

been extended beyond what was originally intended. In their problem, the decision maker selects a 



 

 

maintenance alternative that minimizes downtime for an airplane. In this illustrative example, the decision 

maker assesses the uncertain downtime with intervals by defining a minimum and maximum downtime 

given an alternative. The decision maker can choose between replace and repair. Wilson and Barker provide 

details of a two-stage decision problem between replace and repair, and the decision in the first stage is 

reduced to a deciding between replace with a downtime between 4 and 7 hours and repair with a downtime 

between 3.3 and 8.475 hours. Interested readers are referred to Wilson and Barker for the details.  

Since our previous discussion assumes a maximization problem, the positive downtime hours are 

represented as negative numbers. The following discussion sets [𝑎, 𝑏]  =  [−7,−4] for replace and [𝑐, 𝑑]  =

[−8.475,−3.3] for repair so that 𝑐 < 𝑎 < 𝑏 < 𝑑. If 𝛼 = 0.322, the decision maker is indifferent between 

replace and repair (i.e., 𝛼∗ = 0.322). If 𝛼 < 𝛼∗, the decision maker will prefer repair over replace, as 

depicted in Figure 4. If 𝛼 > 𝛼∗, the decision maker will prefer replace over repair since the [𝑎, 𝑏] interval 

will be preferred to the [𝑐, 𝑑] interval.  

Figure 4 Hurwicz Function for Two Intervals 

 
We first illustrate how these intervals can be transformed to triangle distributions and beta 

distributions and how the Hurwicz decision rule corresponds to a risk-neutral decision with these 

distributions. Second, we demonstrate the relation between the Hurwicz decision rule and exponential 

expected utility. 

 



 

 

5.1. Triangle Distribution 

The two intervals are [𝑎, 𝑏]  =  [−7,−4] and [𝑐, 𝑑]  =  [−8.475,−3.3]. The parameters of the triangle 

distribution depend on the value of 𝛼 in the Hurwicz equation. If 𝛼 =  0.322, which is less than 1/3, we 

need to calculate 𝑎 > 𝑎 and 𝑐 > 𝑐 for these intervals as Theorem 1 indicates. If 𝛼 =  0.322, 𝑎 = −6.89 

and 𝑐 = −8.29 based on Equations (2b) and (2c). The interval [𝑎, 𝑏] should be represented by a triangle 

distribution with parameters (-6.89,-4,-4) and [𝑐, 𝑑] should be represented by a triangle distribution with 

parameters (-8.29,-3.3,-3.3). These distributions imply that the probability that the downtime from 

replacement will be between 6.89 and 7 equals 0 and the probability that the downtime from repair will be 

between 8.475 and 8.29 equals 0. The expected downtime equals 4.96 hours for both of these triangle 

distributions.   

If 𝛼 decreases, 𝑎  and 𝑐  will increase, which implies less likelihood of a longer downtime. If 𝛼 <

0.322, the expected downtime of replace is more (i.e., more negative) than the expected downtime of repair, 

and the decision maker should choose repair. If 𝛼 = 0, 𝑎 = −4 and 𝑐 = −3.3. The decision maker is 

implicitly assuming certainty: replace will result in a downtime of 4 hours and repair will result in a 

downtime of 3.3 hours. In the Hurwicz equation 𝛼 = 0 corresponds to a best-case decision rule. 

If 𝛼 increases (up to 𝛼 < 1 3⁄ ), 𝑎  and 𝑐  will decrease, which implies more likelihood of longer 

downtimes. The expected downtime of replace is less (i.e., less negative) than the expected downtime of 

repair, and the decision maker should choose replace. If 1 3⁄ ≤ 𝛼 ≤ 2 3⁄ , the lower and upper bounds of 

the triangle distributions correspond to the bounds of the interval. Given the mode of the triangle 

distribution as calculated via Equation (1), replace should be preferred to repair based on the resulting 

expected downtimes. If 𝛼 > 2 3⁄ , the upper bounds of the triangle distributions change, which implies less 

likelihood of shorter downtimes. Again, the decision maker should choose replace over repair.  

 

5.2. Beta Distribution 

Figure 5 Beta Distributions for Repair and Replace for Different 𝜶  



 

 

 
 

            We consider the same two intervals to form the beta distribution: [𝑎, 𝑏]  =  [−7,−4] for replace and 

[𝑐, 𝑑]  =  [−8.475,−3.3] for repair. We arbitrarily set the parameters 𝛼𝑥 and  𝛼𝑦 (alpha values for the beta 

distributions where 𝛼𝑥 corresponds to [𝑎, 𝑏] and 𝛼𝑦 corresponds to [𝑐, 𝑑]) to equal 10. As depicted in Figure 

5a, if 𝛼 =  0.322, 𝛽𝑥 = 𝛽𝑦 = 4.74  from Eqs. (8) and (9). The expected downtime for both alternatives is 

4.96 hours. The expected values of the beta distributions must be equivalent when 𝛼 equals the Hurwicz 

indifferent parameter. 

If 𝛼 = 0.1, 𝛽𝑥 = 𝛽𝑦 = 1.11 assuming that 𝛼𝑥 = 𝛼𝑦 = 10 (Figure 5b). The expected downtime for 

replace is 4.3 hours and the expected downtime for repair is 3.8 hours, and the decision maker should choose 

repair. If 𝛼 = 0.5, 𝛽𝑥 = 𝛽𝑦 = 10, which means that both beta distributions are symmetric (Figure 5c). The 

expected downtime for replace is 5.5 hours and the expected downtime for repair is 5.88 hours, which 

corresponds to the midpoint of each interval (i.e., the Laplace decision rule).   

 

5.3. Expected Utility 

5.3.1. Two-interval Scenario 

Finally, we illustrate the relationship between the Hurwicz decision rule and exponential expected utility. 

Figure 6 shows how the certainty equivalent (CE) varies with respect to 𝛾 and with respect to 𝛼 for the two 

intervals [𝑎, 𝑏]  =  [−7,−4] and [𝑐, 𝑑]  =  [−8.475,−3.3]. In the case of this downtime example, the CE 



 

 

is the number of hours that would make the decision maker indifferent between the uncertain interval and 

the CE for a given risk attitude 𝛾 (Garvey 2008). The CE preserves the same ordering as the expected utility. 

If 𝛾 = −0.572, the decision maker is indifferent between repair and replace, which makes 𝛾∗ = −0.572. 

This provides the mapping function from 𝛼 to 𝛾 in which 𝛼∗ = 0.322 and 𝛾∗ = −0.572: 

𝛾(𝛼) =

{
 

 
0.517(2𝛼 − 1)

𝛼
, 0 < 𝛼 < 0.5

1.089(2𝛼 − 1)

(1 − 𝛼)
 , 0.5 ≤ 𝛼 < 1

 

 

(24) 

If 𝛼 < 0.322, then 𝛾 < −0.572 and the risk-seeking decision maker prefers repair, the interval [𝑐, 𝑑], as 

shown in Figure 6. The decision maker is focusing on the best possible outcome. If 𝛼 > 0.322, then 𝛾 >

−0.572 and the decision maker is slightly risk seeking, risk neutral, or risk averse. In these cases, the 

expected utility or CE of replace is greater than that of the repair.  

Figure 6 Certainty Equivalent for Two Intervals 

 
 

Translating the Hurwicz equation to an exponential utility decision problem provides a well-

established foundation for the decision maker to determine his or her risk attitude. The function 𝛾(𝛼) maps 

𝛼 to 𝛾, and a decision maker could use this function to determine his or her risk preference based on the 

optimism-pessimism trade-off or determine the optimism-pessimism trade-off based on his or her risk 

preference. 

 



 

 

5.3.2. Three-interval Scenario 

Many decisions require comparing among three or more alternatives. Although this article does not prove 

the results beyond decisions with two alternatives, similar rules can apply. The two-interval scenario is 

extended to a three-interval case for the maintenance illustration for expected exponential utility. In addition 

to replace with [𝑎, 𝑏] = [−7,−4] and the first repair option with [𝑐, 𝑑] = [−8.475,−3.3], we incorporate 

a second repair option with [𝑒, 𝑓] = [−15,−2].  

The two-interval scenario has one value for 𝛼 ∗ and 𝛾∗ to compare the intervals [𝑎, 𝑏] and [𝑐, 𝑑] . 

In the three-interval case, there is 𝛼 ∗ and 𝛾∗  for every two of the three intervals: 𝛼1
∗ = 0.322 and 𝛾1

∗ −

0.572 are the points of indifference between [𝑎, 𝑏] and [𝑐, 𝑑]; 𝛼2
∗ = 0.166 and 𝛾2

∗ = −0.686 are the points 

of indifference between [𝑐, 𝑑] and [𝑒, 𝑓]; and  𝛼3
∗ = 0.2 and 𝛾3

∗ = −0.658 are the points of indifference 

between [𝑎, 𝑏] and [𝑒, 𝑓].  

Figure 7a depicts the Hurwicz equation as a function of 𝛼, and Figure 7b depicts the CE based on 

the expected exponential utility as a function of 𝛾 where each interval follows a uniform distribution. The 

optimal alternative is the same for both decision rules. If 𝛼 < 𝛼2
∗ and 𝛾 < γ2

∗ , the decision maker should 

prefer the section repair option or the interval [𝑒, 𝑓], and the decision maker is risk seeking or very 

optimistic that the best case will occur. If 𝛼2
∗ < 𝛼 < 𝛼1

∗ and γ2
∗ <  𝛾 < γ1

∗ , the decision maker should select 

the first repair option or interval [𝑐, 𝑑]. If  𝛼 > 𝛼1
∗ and 𝛾 > γ1

∗ , the decision maker ranges from a slightly 

optimistic to very pessimistic or from slightly risk seeking to very risk averse. The decision maker should 

select the replace alternative. In this example, there are three distinct regions for 𝛼 or for 𝛾 for which each 

of the three alternatives should be preferred.  

Figure 7 Hurwicz Function and Certainty Equivalent for Three Intervals 



 

 

 
 

6.  Conclusion and Remarks 

This article shows how the Hurwicz decision rule for non-probabilistic intervals can be transformed to 

equivalent decision problems that follow prescriptive decision analysis. In the first case, the interval is 

translated to a triangle probability distribution for a risk-neutral decision maker in which the skewness of 

the triangle distribution mirrors the decision maker’s emphasis on the worst or best-case outcome in the 

Hurwicz equation. In the second case, a beta distribution with a risk-neutral decision maker is used to mirror 

the Hurwicz equation. In the third case, an exponential utility function that assumes a uniform distribution 

is used in which the risk attitude in the exponential utility function mirrors the decision maker’s emphasis 

on the worst or best-case outcome.  

The article proves that an individual who follows the Hurwicz decision rule to make a decision 

should choose the same alternative as (i) if he or she is an expected-value decision maker when the uncertain 

outcomes follow either a triangle or beta distribution and (ii) if he or she maximizes expected utility with 

constant absolute risk aversion when the uncertain outcomes follow a uniform distribution. Because the 

preferred alternatives are always the same, if an individual is willing to make a decision based on the 

Hurwicz decision rule, we argue that he or she should be willing to assume a probability distribution and 

an exponential utility function. Proponents of non-probabilistic decision making argue that utilizing 



 

 

probabilities may assume too much information for a given problem, especially for epistemic uncertainties. 

However, if subjective expected utility decision making with certain distributions and/or an exponential 

utility function results in the same preferred alternative as a non-probabilistic interval results, does using 

probabilities really assume too much information? One could logically argue that these decision rules 

assume the same amount of information even though the assumptions of each are different. We question 

the use of intervals for decision making since the Hurwicz decision rule can be translated to subjective 

expected utility decision rules, the latter of which is theoretically and practically well supported.  

Although an interval-based decision making rule can be translated to an equivalent probability 

distribution and utility function, a decision maker may feel more comfortable using the Hurwicz decision 

rule than using probabilities or utilities. The Hurwicz equation is easy to understand, and a decision maker 

only needs to consider his or her belief that the best versus the worst outcome will occur. Decision making 

with probabilities and utilities requires that a decision maker understand probability distributions and utility 

functions and is comfortable answering questions to assess his or her risk attitude. Future research could 

conduct behavioral studies to assess if individuals prefer making decisions using the Hurwicz equation or 

using a triangle or beta distribution or an exponential utility function.  

Future research could analyze the relationship between the Hurwicz decision rule and the expected 

value of other probability distributions and using utility functions other than exponential utility. The triangle 

and beta distributions described in this article are not exhaustive, and it appears likely that any bounded 

distribution in which the skewness can be manipulated could translated to the Hurwicz decision rule. This 

article also assumes an exponential utility function, and other utility functions could have a similar relation 

to the Hurwicz decision rule. The utility function should be able to translate to risk-seeking as well as risk-

averse attitudes as long as a uniform distribution is used to describe the interval. For example, a utility 

function with hyperbolic absolute risk aversion is a general form of a utility function that encompasses 

exponential utility, logarithmic utility, and quadratic utility (Ingersoll 1987). Although hyperbolic absolute 

risk aversion is a generalization of constant absolution risk aversion, it is our understanding that the 

hyperbolic utility function assumes either a risk averse or risk neutral risk attitude. In order for the Hurwicz 



 

 

decision rule to have an equivalence with the hyperbolic utility function for every value of 𝛼, the hyperbolic 

utility function will also need to capture a risk-seeking attitude.    

 Other decision rules for intervals could arise which cannot be translated to the Hurwicz decision 

rule. These may not result in the same preferred alternative as probabilistic decision making with a risk 

neutral or an exponential utility function. For example, Gaspars-Weiloch (2014) modifies the Hurwicz 

decision rule to consider a trade-off between the worst and best outcome and Laplace (average). Future 

research could explore the relationship between this modification of the Hurwicz decision rule and 

subjected expected utility.  

The article provides important theoretical contributions on the relationship between interval-based 

decision making and prescriptive decision analysis for the three cases mentioned earlier. Additionally, the 

theoretical contributions have practical implications. If a decision is made based on the Hurwicz equation 

for a given 𝛼, the results in this article could be used to determine the equivalent risk attitude 𝛾 in the 

exponential utility function. If the decision maker concludes that the value of 𝛾 does not match his or her 

risk attitude, then perhaps, the decision maker should be encouraged to reassess 𝛼. 
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