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I. Introduction
There exists side-by^side substantial literatures on von Nuemann

econonies—especially their turnpike properties—(7, 8],—and on

optimal growth theory under uncertainty (1, 2» 6]. Typically, the von

Neumann models, although deterministic, have a fairly complicated prod

uct technology, while the optimal growth models rely on fairly rudimen

tary product technologies. The present work attempts to bring these

two literatures together with the confines of a two-sector von Neumann model

under uncertainty. For ease of interpretation, and as the primary application,

the model is considered as one of an optimally planned economy [3, 4].

The paper addresses two central questions. The first question concerns

the role of inventories in the model. Komai [5] has shown in the context

of a deterministic von Neumann control model that an increase of inventories

slows down the growth of the economy. However, Komai also conjectured

inventories might be advantageous. The model developed in this paper gives

definite support to Komai's conjecture. It turns out that for substantial

degrees of uncertainty in a sense to be made precise, the optimal plan has a

coefficient of resource utilization significantly less than one. The second

question concerns the effect of an increase in risk on the model. An early

result of the kind was due to HothschUd-Stiglitz [9], in their model of

multi-stage planning. They found that for constant rettims-to-scale

production functions, the median of the probability distribution is a crucial

parameter in the optimal plan. The model developed in this paper extends

their result. Further, in the case of synmetric probability distributions,

an increase in risk not only increases inventories but also shifts the allo

cation of resources from the starting of new investments to the completion of

old investments. In this way, an increase In risk has a double Impact on the

capital structure of the economy.



The paper Is organized as follovs. Section II considers the simple case

of the one-sector model. Section III investigates the turnpike for the two-

sector model nnder certainty. Sections IV and V consider the two-sector model

under uncertainty* Including some special cases in Section V.

II. The One-Sector Model

This section reviews a paradigm case of the one-sector model namely

linear production with unit period of production. Thus, if is free
*tresources in period t, and P is projects started in period t, then

(1) - f' - «p' + .

In the deterministic case, • 1, The planning objective is terminal value

maximisation

(2) max

subject to the transaction equation <1), the initial condition (3),

(3) F^ given,

and the constraint

(4) 0 < < p'/a

It is clear by a standard dynamic prograomlng argument that the optimal

policy satisfies

(5) P*^ - pVa ,

tX+1so that the econoaqr grows at the rate of ^ - 7 - X, the von Neumann rate.
F^ "



The value of the optimal plan, from (2)» (3), and (5) then is

(6) ».x - (X)^l fO .

Results are not greatly different In the uncertainty case, where Is

an Independently Identically distributed random variable with Ea^ • 1. The
planning objective Is now expected terminal value maximization

(2)' max

subject to the same conditions as before. The optimal policy still satisfies

(5), and the expected growth rate -—- Xas before. Finally, the value of
F

tt^ opt^al plan, assuming Independence of the various realizations of a. Is

(6)' max F^^ - So. - (X)^V
1-0 ^

Thus the uncertainty ultimately has no apparent impact on the planning

problem. It might be expected that the results of the one-sector model would

generalize to the two-sector model. Such is the case for the deterministic

model, but rather drastic differences thwart the generalization In the event

of uncertainty.

XII. The Two-Sector Model under Certainty

The model of the previous section is extended to two-sectors by the

addition of an Intermediate goods sector. Thus, one now distinguishes between
A^
P , projects updated and n', new projects started. In period t. The transi
tion equations become

(7) - F* - aP' - aN' +
t

(8) - p' - pt + n'



where P represents the Intermediate good* The choice between starting new

projects and updating old ones is reflected In the constraints

(9) 0 < £ Bin (P^/a, p')

since not more projects can be updated than are in process»

(10) 0 < n' _< P^/a -

The objective is to

(U) ,

work in progress being evaluated at its resource cost.

In the deterministic case when - 1, the planning problem then is to

maximize (11)» subject to (7) - (10) and the initial conditions

(12) F® given

Since the objective function exhibits constant returns to scale, it is
useful to define new variables that reflect intensities;

(13) x' - F^/aP^

(14) e' - p'/p'

(15) y' - n'/p'

Rewriting (7) through (10) in the form,

(7)'
a(l - e' + y')

(8)' p'+^ - p'(i - e'+ Y*^)



(9)' 0 ^ 0*^ £ mln <1, X*^)

(10)" 0 5 y' < x' -

We seek the maximum of (11) subject to (7)" - (10)' and (12). Let us call

this problem In the deterministic case (a^ - 1) problem I.

Theorem 1. There exists an optimal solution (6*, Yi) to problem I. It is

characterized by

t* „t t*(a) then e - x'. y' - 0

(b) x' €(X^, xj) then 0<e'* <nln (1, x')
y'* > 0

such that

e^* + y'* - x^
. -t+i «t+iand X " ^

(c) X^ > the 0 - 1

*t
Y indeterminate,

but x'"^^ 3^^^)

where X^ , X^ are defined recursively as
1 + ax5*^(16) X^ "1th the inltUl condition* xj - ^ - 1.
"*U

*1, "

Furthermore, the limit as T • of X^ - X*, the von Neumann growth path,
where X* - 2 + X, X being the von Neumann growth rate (A " ^



Sketch of the Proof

There exists an optimal solution by a standard result of linear programming,

The characteristic of the optimal solution Is proved by Induction on 1, where

t • T + 1 < 1, Define the optiioal stage return function,

(17) j' - max p'"'"S

In the case 1 • 1, one has

«ax +

subject to (7)' - (10)' and (12).

Forming the Lagrangean

(18) . pT) ^ x2(F^ - aN^ - aJ^) .

This Is a linear programnlng problem^ whose solution Is given by

" min(F^/a, P^), Indeterminate.

TThus, since « 1, the solution satisfies condition (a) - (c).

The induction step, which is straightforward but tedious, involves

showing that is a concave function of and that the ratio of partial

derivatives of satisfies

4
(19) i»

4

>1/a if Xj <

- 1/a if 3^ <Xj <x"
- 1/1-a if x" <

. -twhere J • —r for any variable y.
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Finally, the steady state solution of (13) satisfies the equation for the

von Neumann ray.

Intuitively, what the optinial policy says is that the econon^ at time

period t should be aimed as closely as possible to the target and this

target approaches the von Neumann ray for times t sufficiently far removed

from T. It is also worth noting that the series itself fluctuates

according to whether t is odd or even. The first few terms of the sequence

are noted In figure one for the case a - .4, X - .158. Notice that even at

times as near to termination as T- 8, xj is quite close to the von Neumann
ray X* - 2.158.

IV. The Two*-Sector Model under Uncertainty: Solution at T and T-1

In section II It was shown that if planners arc risk neutral, then

introducing uncertainty Into the one sector model has no effect on the expected

growth rate of the system or on the optimal allocation of resources. This

section considers the impact of uncertainty of the two sector model of the

last section. The only formal differences are that a^. Instead of being a
constant equal to one in equation (7)', is now a random variable satisfying

1 - € with probability z

(20) « 1 with probability I ~ 2t

1 + £ with probability z

0_<e£l, 1/2

E(a^ - 0 for 1 j* 0

and equation (11) is replaced by its expectation.^ The case e - 0, .«- 0 corresponds



to certainty. It turns out that fot t - T, uncertainty again has no effect

on the optlnal solution; but at time t - T - 1, the situation is complicated

considerably by uncertainty.

To this end, introduce the Lagrangean (compare [18]),

(21) - E[j'"^^] +X^(p' - p') +XjCf' - aP' - bh').

"From (7), (8), and (17), the first order conditions for an optimum are given by

(22) (a - a) - - X^a <0

(23) - XjB <0.^
T+1 T+1In particular at time t * T, since Jp , Jp are constant, assuming

(1 - 2a) > 0 (i.e., the system is productive), it Is clear that the optimal

strategy at T entails:

(24) F - Min[P^. (F^/a)]

Given the terminal value associated with it is clear that it Is a matter

of indifference whether new projects are started at T (if any resources are
3

available)• Thus:

(25) + aP^ + (1 - 2a) Min[P^, F''̂ /a]

- [(J^-=-^)F^ + aP^] , F^ < aP'

- [f'̂ + (1 - a)p''̂ ] . P^ > ap'̂

Note that the uncertainty has no Impact at T. and, as for the case of certainty,

J Is a concave, linear homogeneous function in (F^, P^). Further, jI,
F P

are discontiauous at • ap''*.
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While the uncertainty has no Inpact on the optimal decision or the

objective function at T, the sane need not be true at (T - I) since

T X T T TJ (F , P ) Is no longer a linear function. The ray (F • aP ) represents a
Tvertex of J , and at (T - 1) the planner will attempt to steer the economy

towards this ray. However, because of the uncertainty, the planner cannot

be sure whether he will hit this target, and thus he oust decide whether

to aln for this target 1) on the average (a • 1), 11) for an optimistic

outcome (a • 1 + e), or 111) for a pessimistic outcome (a * 1 - e). 'As we

shall see, the appropriate choice depends on the parameters of the distribution

(Zt e)a as veil as the growth rate of the system (Inversely related to a).

From the certainty solution ve know that at (T - 1) there exists a range

of such that:

(26) x''̂ (l) <1 for <x'' =(j-f-j) if Y- 0, 0^"^ - x'̂ "^ .
T TIn (26)» X (1) means X Is evaluated at the outcome a • 1, corresponding to

the certainty solution. Therefore, for small the planner wUl not be

able to reach the target (X • 1) on the average.

Similarly, under certainty, if X^*^e(X^, x''̂ ) =(^, ^) then the planner
can reach the target without holding any idle reserves, to recapitulate that

result:

(27) X^(l) - 1 for ^) if <1; - 6^.
T^l 1*4^Finally, for X > ("~^) >reaching the target at T entails holding idle

reserves at (T-1), which in turn implies all existing projects must be updated.

Under uncertainty, the first order conditions are:
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(28) - E[jJ(a - a) - Jj^] - - dja 1 0

(29) - E[J^ - ajJ] - *2« i 0

where:

(30) jJ - (^^), jJ - a. x"' <1

4 - 1. Jp - (1 - a). X'' >1.
T TSince Jp (1 - a) ^ Jp, one of the two constraints must be binding. If

X <1, then ^ and X•« 0; consequently, for <1:

(31) n"^"^ - 0«>E[oJ^ - 2jJ] >0

From (30), It la apparent E[ajJ - 2Jp] >0If x'̂ (l) <1; thus, for x""^"^ <
the uncertainty has no Impact on resource allocation at (T-1). Further, it

la apparent that E[Jp - flJp] <0 as x'''(l) <1, This implies that for
^ ^ the planner should aim the economy so that, for a - 1, - 1.
Thus, for large X (X > X • —uncertainty again has no intact
on resource allocation. The real dilemma for the planner arises for

v^""^ -/v^ v^\ _/a 1 + a*ev.A , A ; - + a' —a— ' where the planner must choose between updating

old projects or starting new ones. This is the essential problem introduced
by the uncertainty, that of attempting to obtain a balanced allocation for

the subsequent period.

Clearly, It would never be desirable to allocate resources such that
TX >lata"l-e; i.e., the planner never wants to choose an allocation

that will lie above the target with probability one. Thus, uncertainty
will affect the resource allocation at (T - 1) only if E[aJp - 2Jp] >0 for
x'd - e) <1, X^(l) > 1:
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(32) E[oJj - 2Jp] - (-^) I-a +z(l +2a - c)l

From (32)» we see that the Impact of the uncertainty cannot be related to the

variance of the disturbance alone; It depends on both the magnitude of the

disturbance, and the probability of the outcome.^ Using (32), define z*:

(33) z* - [a/(l+2a-e)I 1 1/2; >o, ||^ >0.

For z > z*, N- 0 if X^(l - e) < 1; thus, the optimal allocation at (T - 1)
depends upon the magnitude of the disturbance, the probability of outcomes,

and the growth rate of the system;^ these results are collected in

Theorem 2. The optimal allocation of resources in period T - 1 is as follows;

.T-1(a) If X < ^ then for all z, P • F/a, N• 0

<b) If^<X^"l<i^andz<z^P.MlJ±J^,N.F/a.^

(c) If ^^ ^<X^ then for all z, P- P, N•
2a *

1+a* ^ j ^_g. then for z>z*, P• F/a, N- 0.

1+a- e* ^ ^^a" Chen for z>z*. P- 2a^- e '̂ N- F/a - P
(f) If ^ * <X^ ^ ^^ then for z>z*, P- P, N- F/a - P.
Cases (a) - (c) are the same as the certainty solution.

Several things are noteworthy from Theorem 2. First, if the uncertainty
has any impact, it is to increase the emphasis on completing existing
projects at the expense of new ones; It does not affect the choice between

starting new projects or holding inventories. Thus, for X^"^ > •»
— ^ a "

the uncertainty has no impact on the resource allocation.
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Secondly, a mean preserving spread of the distribution (an increase in

z that puts more weight in the tails) raises the likelihood that the uncertainty
cwill affect the resource allocation* As noted earlier, the planner attempts

to steer the economy towards X - 1; however, the problem is whether to do

this for the worst outcome (a • 1 - c), or the median one (a • 1); the larger
the probability of the worst outcome, the more likely it is the planner will

steer the economy towards - 1 at that outcome. Thus, mean preserving

spreads increase the emphasis placed on completing existing projects.

An increase in the magnitude of the disturbance (e) has ambiguous effects.

On the one hand. It increases z*, and therefore the likelihood the planner
will not be affected by the uncertainty. Intuitively, the larger e means more
risk is associated %ri.th the coiq>letion of existing projects, and hence makes

it less desirable to Increase the number of these projects. On the other

hand, if tha planner steers the economy so that X*^ - 1 for o - (1 - e)
(i.e., X> z*), then more weight is given to completing these projects to
insure the target will be met (dP/^c > 0 for z > z*).

Finally, note that changes in a affect z*; specifically, 3z*/3a > 0.

Since the potential growth rate of the system Is Inversely related to a, this
means that the larger the potential growth rate of the system, the more

likely it is that the uncertainty affects the resource allocation (z > z*).
The larger the growth rate of the system, the more desirable it is to Insure

that projects initiated at (T - 1) can be completed at T—and hence the more
weight that is attached to the worst outcome (a • 1 - a).

Turning to the effect of the uncertainty on it is

clear that, due to the concavity of J^, the uncertainty lowers the expected
value of terminal output. This is true even for z < z*, when the uncertainty
does not affect the resource allocation pattern. Similarly, increases in
the magnitude of the disturbance lower (or leave unaltered) J^"^. Thus,
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unlike Che case of the one sector nodel« the imcertainty adversely affects

the |>erforBance of the system* Table 1 sumiarlses these results*

V. The Two-Sector Hodel under Uncertainty: The Solution At T'-2

While it was possible to characterize completely the solution at

(T - 2) and earlier becomes considerably more complex. The complexity

arises from several reasons. First, the objective function at (T - 1)

depends on the parameters of the disturbance distribution and, under

uncertainty, this function must be evaluated at different points. Thus,

the optimal solution will depend on these parameters and a host of potential

solutions arise, moreover, there seems to be no simple way to relate

the parameters to the optimal solution. Secondly, since the disturbances

for each period are assumed uncorrelated, the joint distribution of

these disturbances becomes important. Since this Joint distribution

will be a polynomial, the longer the horizon, the higher the degree of

the polynomial, and hence the more complex it becomes to ascertain the

properties of an optimal solution. Finally, under certainty we have

seen that at any t, there exists a range of the sectoral Intensities;

^ (t)), that completely determine the optimal solution; moreover,

at t, the planner aims the economy so that, If feasible,

Under uncertainty, this rule is greatly complicated; for one thing,

the planner must decide whether to allocate resources so that the economy

achieves the target "on average," or whether to give more weight to

the pessimistic (or optimistic) outcome. Moreover, the numbers of these

"targets" proliferate as we move to earlier periods since son^ will correspond

to achieving the "target" for subsequent periods with an optimistic outcome

others with a pessimistic outcome. Thus, the co^>lexity of the
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the problem increases enormously as the length of the planning horizon

increases.

To discuss the optimal solution at T - 2, it is necessary to distinguish

the cases z < z* from z > z*; the former we consider first. For z < z*,

the imcertainty has no impact on decision making at (T - 1); however, this

in general, will not be true for (T - 2). In allocating the resources

T—1at (T - 2), Che planner will* in general, guide the economy so that X

equals ^ *) - i.e. he will aim towards the VonNeuman growth rate.
However, in so directing the economy, the planner must decide whether to

focus on the "pessimistic," average or "optimistic" outcome. Horeover,

if he chooses the average outcome, for example (so that ^(a >• 1) • ^ ^ ^ ),
he will need to know whether X^~^ (1 - e) < -r—§ ; if X^"^ (1 - e) <

^ X • A

A T

^1 + a ^* then even at T the target (X • 1) cannot be achieved. However,
if:

(34) € < ^
(1 + a)^

then the planner can be sure that X^~^ (1 - e) > — , for X^"^ (1) > ^ ^
X T A A

We shall assume (34) holds.

As in the case of certainty, if X^" '̂< X^~^ « I ^ , then the
L 2 + a

economy cannot achieve the target X^ ^ ^ even on average. Thus, it
a

is readily verified for this case that X^"^ <(^ ^ entails starting no
new projects and using all free resources to finish as many older projects

as possible. For X > (^ + g)» the planner must decide whether to
start new projects, or continue completing older ones. If the latter

course Is chosen (N - 0), then >(i-^), and In essence, it means
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T""l 1 + athe planner behavea so as to steer the economy towards X - (—~—) for

the pessimistic outcome. However, if z is small, then less weight

will be given to that outcome, and the planner will adopt the certainty

solution, aiming the economy so that (a - 1) • Formally,
a

the optimal allocation depends on:

(35) sign E [CLjp - 2Jp]

ZfE[aJp - 2JpI >0 for ^ (1 - c) <^^ ^ <X^ ^ (1), then laore weight
is given to the pessimistic outcome, and hence more eaq>hasl8 is given to

completing existing projects. For E [aJ_ - 2J-1 < 0 for X^"^ (1 - e) <
F r

1 + a T—1j < X (1), the outcome focused upon is that corresponding to a • 1.

Table II sunmarizes the optimal decision rules for the case z < z*.

As can be seen from the Table, the optimal solution depends upon the

probabilities associated with each outcome. For small z, the uncertainty
T"2 2 ^has no impact for X ^ » however, as z increases, more attention

is focused on the pessimistic outcome, and hence on completing existing

projects. Note that for z >^ (which is feasible only for e >1/2),
all existing projects are cooqileted before new ones are started.

One other feature of the optimal solution is noteworthy. Under
certainty if x^ ^>(^ ^ ^), some inventories will be held to Insure
the economy will achieve its target at (T - 1) - i.e., it is not

desirable to use all of the surplus capacity of the econony to start new
projects since insufficient resources will exist at (T - 1) to continue

along the balanced growth path. However, under uncertainty, the planner
is not sure how many resources will be available next period. As long as
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the economy Is productive» it will be desirable to start some extra

projects (beyond the certainty solution) in order to be able to utilize

next period's output, should productivity turn out to be high (a"(l+£)).

Thus, while the uncertainty places less emphasis on new starts at (T'2)

if X lies below the VonNeuman ray (j^) >more emphasis is placed
on these projects once all existing projects are fully allocated resources.

The optimal solution for z>z* will be qualitatively similar to that

sketched above, with the exception that the planner must also decide what

T—1target to aim for at (T-l)~ie, should he steer the economy towards X •*

» or X^ ^ ^ uncertainty affects the resources
allocation at (t 1) the nuiitf>er of potential targets proliferates. The

optimal rule for allocating resources at <T - 2) Is still given by

equations (22) - (23); further, if X^"^ <1, it is clear not all projects
can be coiq>leted, and hence 0. As in the previous case, for "small"

^r^). N- 0. P- F/a; I.e..

(36) E[oUp"^ - >0 if <(iisrE).

If X^ ^>(J+^a-e planner can achieve the target X^~^(l) - ^
a

The essential question now becomes whether the economy should be "steered"

towards ( - ), or ); and also whether the planner should "concentrate"
T—1on the average value of X , or the worst outcome. In essence, the

optimal rule can be derived by evaluating E[quJ_ - 2J ] in the various
pregions; (I) x^"^(l-e)<(i±^) < <(i^); (u) (1-e) <

^ ("D (^) < (1-e) < and
(IV) x'̂ "^ (1-e) >(^).

8
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To say the leasti thia la a rather tedious job, and the precise solution

depends on the values of («» e, and a). From Table I, after some simplifica

tion:

(37) E[aJy-2Jpl>0 as =[2(H-a)-z {8(l+a)-2E+ii=|̂ |i±|̂ )

+4z^O+2a-e)] ^ 0
for region 1.

(38) E[aJp-2Jp) 0 as - [-14-z ) - 4ez^] ^ o
for region II.

(39) E[aJp-2Jp] ^0 as - [-l+i(3+2a+3E) - 2z^(3+2a-c)] ^0
for region III.

(40) E[aJp-2Jp] 2- 0 as 4ez-l %0
for region IV.

Once (37)-(40) are evaluated, the solution can be determined. For example,
if < 0, the planner aims the economy so that x'*'"^(l) « ( '̂*"^"^); if > o,

a I

♦jj. <0. then the target is X '̂̂ d) - (i^); if >o. <0.
vT-1/1 \ /1+e—Gv , AX (1-e) - and so on. Note that ^[E(oJj.-2Jp) 1 >0—i.e., the larger
the disturbance, the greater the incentive to allocate resources to completing
existing projects at the expense starting new ones.

To Illustrate, consider the following example. We set a - .4, A- .158

and consider the solution for e - 0, c - .2, and e - .6 for various values of

z. The first case corresponds to certainty. In the second case, given the
worst outcome, all investment is recovered, though no net output is obtained.
In the final case, only current investment, but not prior investment, can be
recovered under the worst outcome.
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Figure 2 plots the optimal ^ as a function of in the case of
certainty. Note that for X> X^, 6 - 1 and there is less than full utiliza-

9
tion of resources.

Figures 3 and 4 plot the cases e • .2 and e • ,6 respectively. For all
T—2 T"2values of z, for X £ Xy i more projects are started than under certainty,

the increase being more pronounced as e increases and as z increases. For all

values of z, the zone of full resource utilization extends beyond except

for the case z > .404» e • .2 where the optimal plan aims at —irnHfty the
a

worst outcomes. Further, except for this case, more new starts are observed

T-2past Xy than under certainty. For e - .2, an increase in z usually

decreases but for e - .6, an increase in z increases

Several inferences can be drawn from the results of this section. First,

it seem apparent that the larger the size of the disturbance, the more

desirable it is to finish existing projects before newer ones are started.

Secondly, in most cases it appears that mean preserving spreads have the same

effect. If the probability of deviating from "normal" productivity is small,
then it will not affect the resource allocation. However, as z increases,
it again becomes more iaqrortant to finish current projects. Finally, the
smaller a (the larger the growth rate of the system) the greater is the

importanoeof completing existing projects. Thus, although uncertainty
affects the fine detail of the optimal plan, the features of target seeking
and the sequence (update old projects, start new projects, less than fully
utilize resources) as a function of relative endownment of the economy
persists.
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Footnotes

1. A continuous random variable with mean one leads to qualitatively similar

results. The value function, as before, will exhibit constant returns to

scale In Its arguments.

2. Recall the notation convention of (19).

3. While specifying a different terminal value for would alter this

conclusion, it would not appreciably affect the solution for previous

periods, provided

If 1 - 2a • 0, 80 chat the growth rate is zero, it is apparent that

nothing can be gained by production, so that the optimal solution

degenerates to P • N • 0.

5. In general, for the continuous distribution, the effect of uncertainty
A

at T-1 is to increase P and decrease N.

6. In the discrete case, the increase In z has no effect on resource alloca

tion, provided that z - z* is one signed. However, for the continuous

case one would expect that an Increase in z would increase P.

7. It will always be optimal to complete some existing projects (for a plan
of any length) since P - 0 liiq>lies N- F/a, - 0, and E[oJ_-2J_] > 0,

F P

a contradiction.

8. The results for e > "iH differ from those cited in the text only
to the extent that, for - (^). N- 0, P- F/a, x''"\i-e) <(:^).

X « a

and hence more emphasis will be placed on finishing existing projects
before starting new ones.

9. The optimal policy in this case is not unique. The policy depicted aims
T—1at Xy . All other optimal policies agree on 0 £ X^ aims for

J-1 „T-1. - „T-2 „T-2the Interval (X^^ , Xy ) for X >X^ , thus leading to even less
utilization of resources.



26

References

1. Brock, W. A. and Mlrman, L. J., "Optimal Economic Growth and Uncertainty:
The Discounted Case," Journal of Economic Theory 4 (1972), 479-513.

2. Calvo, Guillermo A., "Optimal Maximin Accumulation with Uncertian Future
Technology," Econometrlca 45 (1977), 317-328.

3. Fedorenko, N, P., "Optimal'noe Planirovanie i Tsenoobrazovanie,"
(Optimal Planning and Price Formation, in Russian), Vestnlk AM COOP, 1966, Ho. 2.

4. Heal, G. M., The Theory of Economic Planning. American Elsevier:
New York, 1973.

5. Kornai, Janos and Andras Simonovits, "Decentralized Control Problems in
Neumann-Economies," Journal of Economic Theory 14 (1977), 44-67.

6. Levhari, D. and Srinivasan, T., "Optimal Savings under Uncertainty,"
Review of Economic Studies 36 (1969), 153-164.

7. McKenzle, Lionel W., "Turnpike Theory," Econometrlca 44 (1976), 841-866.

8. von Neumann, John, "A Model of General Economic Equilibrium^" Review of
Economic Studies 13 (1945), 1-9.

9. Rothschild, M. and Stlglitz, J., "Increasing Risk II," Journal of
Economic Theory 3 (1971), 66-84.




