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INTRODUCTION 

Differences between conventional single frequency eddy current (EC) 
nondestructive testing (NDT) and remote field eddy current (RFEC) NDT are 
summarized schematically in Fig. 1. In the testing of steam generator tubing, a 
differential probe (Fig. la) is used to produce impedance plane trajectories (Fig. lc) 
which are indicative of the tubes condition. From a numerical simulation or 
modeling point of view, the finite element (FE) prediction of such impedance plane 
trajectories [1-3] requires a geometry of the dimensions shown in Fig. le. The 
relatively small mesh sizes associated with the FE simulation of EC probe behavior 
are a distinct advantage in that only modest computer resources are required. 
Indeed, for axisymmetric geometries, such code can run on a personal computer. 

In the case of RFEC probes, however, the situation is vastly different. A 
typical RFEC probe [4,5] with exciter to sensor spacing of three pipe diameters is 
shown in Fig. 1 b for the case of transmission gas-pipeline. The corresponding 
'defect signal' (in this case the steady state AC phase difference between exciter and 
sensor coil signals) is shown in Fig. ld and the required FE simulation geometry in 
Fig. If. The large area (for 2-D simulations) to be discretized in this case arises 
because of the exciter to sensor spacing and the need to eliminate tube edge effects 
from the defect signal [6]. This results in the need for extensive computer 
resources in order to simulate RFEC testing of transmission pipeline. 

This comment is doubly valid in extending existing 3-D FE code [7] to RFEC 
geometries where one might be interested, for example, in simulating the RFEC 
probe response to a 10% through wall pit or very nne inter-granular stress 
corrosion cracking. The volumetric discretization required in this case represents a 
significant challenge even for today's best supercomputers. After describing the FE 
formulation, this paper discusses two aspects of the problem, namely node ordering 
and a "zoom-in" technique which shows promise for providing accurate simulation 
results for large pipeline geometries. 

Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9 
Edited by D.O. Thompson and D.E. Chimenti 
Plenum Press, New York, 1990 

319 



0.75" I 
a 

~ ..... 
0 

0 

Ul .... 
X 
ttl 

' 

Fig. 1. 

320 

u 

~~ 

~ 
r-f 
r-f 
ttl 

IZI ~ 

Q) 

a. . .... 
a. 

air air 

3" 

e 

• 

t 
0.05" 

t 

., 
"' "' .c 

0.. 

l 
6" 

d 

e 
8 
0 

Ul 
.... 
X 
ttl 

J C···it·· ~··"·"· 
>Ill Ill 

b 
3D 

Distance (pipe diameters) 

f 

~ r-f :>. 
r-f 1-< 
ttl ttl 
~ '0 

6' ~ 
Q) ::l a. 0 

46 I 

. .... .Q 

~ 
a. 

1-< 
Q) 

+-' 
::l 
0 

air air 

11' ... 

Comparison of EC and RFEC modes of testing: (a) EC differential probe in 
a steam generator tube: (b) RFEC probe in a transmission gas-pipeline; (c) 
EC impedance plane trajectory for a tube O.D. defect; (d) RFEC phase 
difference plot for a pipe O.D. defect; (e) EC geometry needed for FE 
simulation; and (f) RFEC geometry needed for FE simulation. 



FINITE ELEMENT FORMULATION 

The partial differential equation governing RFEC phenomena is based on the 
principle of electromagnetic induction described by the Maxwell-Ampere law, 

~H·dl=JJ:[l+~~~-ds (1) 

and the Maxwell-Faraday law, 

:P - - If CJB -E·dl=- -·dS 
c s C!t 

(2) 

In differential form these equations can be written as 

Vx [~ vxxj = J,-cr~~ (3) 

where f.L, A, J, and cr are the magnetic permeability (H/m), magnetic vector 
potential (Weber/m), applied current density vector in the coil (A/m 2 ), and the 
electrical conductivity (mhos/m), respectively. The quasi-static nature of the 
problem neglects displacement current. Assuming constant, single frequency 
operation and an isotropic material with no spatial variations in f.L, Eq. (3) reduces 
to an elliptic PDE in terms of the phasor vectors A and i,, 

v\7 2A = -J, + jwcrA (4) 

where v is the reluctivity (reciprocal permeability). 

The finite element method does not give a direct analytical solution to this 
linear diffusion equation. Instead, the solution is obtained numerically by 
formulating an energy functional equivalent to the diffusion equation, discretizing 
the solution region by eight node hexahedral isoparametric elements, selecting an 
approximating function which ensures continuity across inter-element boundaries. 
and minimizing the energy functional with respect to each nodal value of potential. 
The resulting simultaneous algebraic equations are then solved to give the 
unknown magnetic vector potential values at each node in the region. 

The three dimensional energy functional corresponding to the full 3-D Eq. (4) 

is 

(5) 

where the first term represents the stored energy in the magnetic field, the second 
term represents the dissipated eddy current energy, and the third term is the input 
energy. 

Functional minimization is achieved by substituting the approximating 
function, 

A(x.y.:.) = :LNi(x'.y'.z')Ai 

(where x ·• y' and z' are local coordinates) into the functional and setting its first 
derivative with respect to each of the unknown potentials to zero. That is, 

i = 1.2.3 .... ,N; k=x.y.z 

(6) 

(7) 
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where N is the total number of nodes in the solution region. For convenience, 
instead of performing minimization node by node, it is performed element by 
element, and then the contribution of individual elements is summed to obtain 3N 
simultaneous linear algebraic equations which form a single global matrix 
equation, 

[G){A) = {Q) (8) 

where [G] is the 3Nx3N banded nonsymmetric complex global matrix and {Q) and 
{A) are the 3Nxl complex vectors of sources and unknowns, respectively. Eq. (8) 
can be solved by any standard solution technique such as Gauss elimination and 
the magnetic vector potential obtained. Other quantities such as flux density and 
induced emf can be calculated directly from the A values. 

NUMERICAL STABILITY 

As discussed in the introduction, the solution of 3-D RFEC problems is 
somewhat different from that of conventional EC problems because of the 
extremely low field intensity value in the RFEC remote field region. It has been 
found that an appropriate choice of the node numbering order is very important 
for numerical stability of the solution. 

In general, the node numbering order does not affect the closed form solution 
of a matrix equation. However, in the case of numerical calucations, computer 
round-off errors may act as perturbation sources. For most electromagnetic field 
problems containing a ferromagnetic material, the difference in global matrix 
coefficient values is quite large because of the high permeability of the 
ferromagnetic material. Therefore, the solution of these problems is very sensitive 
to perturbations. Sharp changes of coefficient values in a matrix usually give rise to 
cancellation problems in the elimination process. Furthermore, the distribution of 
these sharp changes causes an accumulation of round-off errors which can result in 
perturbation sources in the numerical solution. The RFEC effect, characterized by 
far field quantities that are only about ten millionths of those in the near field 
region, may be entirely submerged in such errors if the perturbations are serious. 

To avoid this kind of instability problem, it is necessary to group the 
coefficients of similar values as closely as possible by choosing a proper node 
numbering order which reduces the number of sharp changes in the global 
coefficient matrix. The 3-D node numbering order 6-Z-R appears to be the only 
proper choice among the three possible choices; z -R -6, 6-Z -R and R -6-Z. Examples 
of the node numbering order Z-R-6 and 6-Z-R are shown in Fig. 2 and the 
corresponding matrix structures in Fig. 3. Figs. 4a and 4b show the steady state 
AC phase difference between exciter and sensor coil signals for each node 
numbering order when the exciter coil is fixed and the sensor coil is moved towards 
the remote field region. The result using the order Z -R -6 does not match the 
accurate axisymmetric result even for the denser discretization, while that using 
the order 6-Z -R shows good agreement. 

"ZOOM-IN" TECHNIQUE 

The need for extensive computer resources is one of the serious difficulties in 
applying the FE method to RFEC simulation in 3-D. An initial study [8) to 
overcome this difficulty has been made in an attempt to utilize the less demanding 
nature of the boundary element method. In certain cases, however, a special 
technique may be helpful from a practical point of view. Suppose the problem is 
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Fig. 2. Example of the node numbering order: (a) Z-R-fi and (b) fi-Z-R. 
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Fig. 3. Matrix structure: (a) Z-R-fi and (b) fi-Z-R. 
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Fig. 4. FE Prediction of phase characteristics: (a) Z-R-fi and (b) fi-Z -R. 
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basically two dimensional or axisymmetric with the exception of a small local 
region such as the surface of a gas-pipeline having a fme inter-granular stress 
corrosion crack. If we make use of this 'almost 2-D' geometry in the calculation, 
computer resources can be reduced. This is the main idea behind the "zoom-in" 
technique. 

Assume that the object to be modeled is a gas-pipeline having a small 3-D 
defect on the wall in the remote fi.eld region. Our interest is in the fi.eld changes 
around the defect. It is obvious that the area affected by the presence of the defect 
will be limited to a local region 'abed' close to the defect (Fig. 5). The area outside 
the local region will not be affected much so that the solution for the outside area 
will almost be the same as that of the axisymmetric 2-D problem with or without 
a defect. Therefore, the local region can be treated as the full geometry for the 3-D 
solution. and the required boundary values of the local region can be found from 
the solution of the corresponding axisymmetric problem. To determine the 
location of the local region, proceed as follows: 

1. Solve the axisymmetric problem without a defect. 

2. Solve the same problem with an axisymmetric defect of the same 
dimensions as the real 3-D defect in R and Z directions. 

3. Compare both solutions and select the smallest region where the 
difference of the two solutions is larger than the error to be allowed in 
the solution. 

As the real 3-D defect is smaller than the axisymmetric defect, this procedure 
represents a conservative estimate of the local region. 

Fig. 6 shows the relative steady state AC phase difference between exciter and 
sensor coil signals when the sensor coil passes the defect (in this case both coils 
move together) where an axisymmetric defect with a small pipe diameter was used 
to verify the validity of this technique. 
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Fig. 5. Axisymmetric 2-D calculation region. 
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Fig. 6. FE Prediction of relative phase difference. 

CONCLUSION 

3-D FE modeling of RFEC phenomena appears to be feasible if adequate care 
is taken during node ordering and a "zoom-in" technique is used to limit the 
required computer resources. Additional work is needed on large diameter pipeline 
structures in order to validate these codes. 
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