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I. INTRODUCTION 

It is now almost universally recognized that a properly conducted 

sample survey can often be a good alternative to a complete census when 

information on the characteristics of some population is desired. 

Perhaps the two chief advantages of a sample survey are (a) the saving 

in cost over a complete enumeration can be appreciable, (b) it might be 

virtually an impossible task to economically compile detailed infor

mation on an entire population within a limited period of time so that 

larger non-sampling errors will be encountered with a census compared 

with a sample survey. The main two disadvantages of a sample survey 

would appear to be that (a) it does not permit the myriad of breakdowns, 

cross-classifications, "small area" statistics, etc., that users of the 

data might demand, (b) any figures derived from a sample are subject 

to sampling error because of the failure to enumerate the entire popu

lation. It is apparent that in a complex economy both the sample survey 

and the complete census have important roles to play. 

A census or a sample survey taken at one point of time can obviously 

furnish data which are relevant to that point of time only. If the popu

lation characteristics are relatively stable then the statistics so 

obtained will be adequate for some time to come. However in a dynamic 

population characterized by significant changes in characteristics 

within a short period of time a census or a sample survey conducted 

infrequently is of limited use. It is thus of some importance that the 

data be collected in as brief a time interval as possible. Zarkovich 

(1961) has vividly illustrated both static and dynamic populations using a 
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historical series on the number of native males per hundred females in 

the United States as an illustration of the former and the number of 

employed persons in the agricultural sector of the United States economy 

during the period 1955-56 as an illustration of the latter. 

Since the rate of change itself can be highly variable, "non-

repetitive change surveys" which are taken only two or three times for 

the purpose of providing information on changes can meet only short-

term needs. Any such information is, of course, still preferable to a 

"one shot survey." There is obviously a need for sample surveys which 

are conducted at more or less regular time intervals; these have been 

referred to as "current change surveys." Such surveys are usually 

expensive to operate since a permanent field organization may be 

required to conduct them. It is therefore desirable to develop efficient 

designs for their specific purpose. Considerable research has been 

conducted towards achieving this end. It is hoped that this dissertation 

will prove to be a useful contribution to this body of knowledge. 

Yates (1949) has listed five alternative vehicles for the collection of 

up-to-date information in a dynamic population. These are: 

(1) A complete census may be repeated in its original form at 

intervals. 

(2) A new sample on each occasion may be conducted without 

regard to previous samples, i.e., independent samples. 

(3) A survey may be repeated on the same sample, i.e., a 

fixed sample or a fixed panel. 

(4) Part of the sample may be replaced on each occasion, the 
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remainder being retained, i. e., partial replacement. 

(5) A re-survey of a sub sample of the original sample may be 

made, i.e., a subsample. 

We shall be concerned here with the fourth of these alternatives. 

This sampling scheme has been referred to in various parts of the 

literature as "sampling on successive occasions with partial replacement 

of units, " "rotation sampling,11 and "sampling for a time series. " 

These terms all refer to the process of dropping some of the old units 

out of the sample and adding new units to the sample on each occasion. 

The rotation plan specifies the number of occasions for which any given 

unit provides information in the survey. It thus determines the number 

of units that will be matched between occasions. Our attention will be 

focused upon rotation designs with a fixed plan of partial replacement. 

It is possible to ascertain from the prespecified rotation plan on what 

occasions any given unit enters and leaves the sample. The sample size 

n and the population size N are both fixed over time and the re

placement fraction from occasion to occasion is constant. By a one 

cycle design is meant a rotation pattern wherein a unit enters the sample 

for r occasions and then drops out and does not return. Similarly in a 

two cycle design a unit comes into the sample for r occasions, drops 

out for m occasions, returns for another r occasion and then drops 

out once again but does not return. One and two cycle designs demand 

that the population size be effectively infinite if the sampling conditions 

are to be met. With an infinite cycle design a unit is permitted to enter 

the sample for r occasions, to leave for m occasions and to continue 
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doing this without limit; it is thus required that n(m+r)/r = N. In 

practice one would select a random sample of size N' from N and 

carry out the rotation on the N1 units only. Since N' is arbitrary the 

above restriction does not rob the design of its generality. Infinite cycle 

designs are of interest when the sampling fraction n/N is not small, 

e. g., as when rotating within primary or secondary sampling units in a 

multi-stage design. 

In one-level rotation sampling only sample values that have been 

drawn from the population on the current occasion may be added to the 

pattern of sample values previously available. Such a design is illus

trated in the following pattern (1), in which each row represents a 

rotation group of units and an X in the column footed by t ^ denotes 

that the group was sampled at the i-th previous survey. 

X 
X X 

X X X 
X X X 

X X X 
X X X 
X X 
X 

t-5 t-4 t-3 t-2 t-l to 

At each tQ, a x 0, -1, -2, ... , there are n sample values in the 

sample pattern. Of the n units in the sample at time t& ^ , (1 - n)n of 

these are retained in the sample for observation at time t and the c a 

remaining juin are replaced by jxn new ones. In the above example the 
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replacement fraction is p, = 1/3. Those values to the right of the 

vertical line are added at tg to the previously observed values to the 

left of this line. The term "one-level" refers to the fact that one 

column of observations is added to sample pattern at each occasion. 

Thus the sample overlap, or the extent to which the same sampling unit 

is surveyed over time, agrees with the information overlap. 

In two-level rotation sampling values referring to the previous 

occasion as well as to the current occasion are added to the sample 

pattern on the current occasion. Such a design is illustrated in pattern 

(2). 

X X 
X X 
X X 

X X 
X X 
X X 

X X 
X X 
X X 

X X 
X X 
X X 

X X 
X X 
X X 

t-5 t-4 t -3  t-2 t-1 *0 

At time t^ not only the sample values to the right of the vertical line 

but also those above the upper horizontal line augment the pattern of 

values. A sample of n new units is selected on each occasion, the 

replacement fraction jjl therefore being unity. The previous value as 
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well as the current value of the sampled units are recorded. It would 

obviously be folly to employ a partial replacement scheme under such 

conditions. "Two-level" indicates that sample values from two columns 

are added to the pattern at each occasion. The sample overlap and the 

information overlap do not agree. 

The extension to three-level and multi-level patterns is immediate. 

For example, in a three-level design values referring to occasions 

t ^ and t ^ as well as those collected for ty are adjoined to the 

pattern on occasion t^ . 

In a truncated rotation pattern only the data from the I > 2 most 

recent occasions are included in the estimator, the remainder being 

ignored. Truncation is performed for two possible reasons: (a) the 

bulk of the variance reduction may result from the use of the most 

recent data only, (b) the assumed correlation model may be only an 

accurate description of the true correlation structure locally. Neither 

two-level rotation sampling nor truncated rotation patterns will be dealt 

with here. 

It is through the choice of an estimator that the statistician derives 

benefit from the sample overlap when sampling on successive occasions 

with partial replacement of units. Estimators of the current occasion 

mean or total can be constructed in two different ways in such 

situations. The data from the current occasion only can supply an 

unbiased estimator of the current occasion level; Yates (1949) calls 

these "overall estimates. " A recurrence-type estimator may be formed 

by adding to the estimate for the previous occasion an estimate of 
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change from the matched units only. The composite estimator of level 

is then a weighted average of these two types of estimates. A composite 

estimate of the change between any two occasions is provided by the 

difference of the composite estimates of level for the individual 

occasions. A more precise estimator of change is formed by revising 

the estimate of the earlier occasion level in light of the matched sample 

data that has been gathered since that time. The estimate of change so 

derived will not be consistent with the two individual estimates of level 

and so, for practical reasons, is not usually favoured. 

There is considerable latitude in designing a rotation sample. The 

choice of an optimum design is governed by such factors as the varia

bility in the different populations, the relative importance of change and 

current occasion statistics, various cost factors, the frequency with 

which estimates are to be released, the nature and variety of data to be 

collected, the correlation structure between matched units over time, 

and so on. With such factors in mind the statistician determines a 

compromise design requiring decisions as to the extent of the sample 

overlap, the possibility of information overlap, the spacing of inter

views, the size of a rotation group and the number of cycles to be made, 

the form of the composite estimator and the choice of weights for its 

component parts, among other things. Many of these aspects of 

rotation sampling will be dealt with in the succeeding chapters. The 

criterion to be adopted here for selecting a certain design and/or 

estimator will usually be that of minimum sampling variance. 

What are the advantages and disadvantages of a partial replacement 
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sample design coupled with composite estimation relative to the use of 

completely independent samples or matched panels? Some of the more 

important considerations are listed below. 

(1) The composite estimation technique makes use of past as well 

as current information. If there is a strong positive correlation 

between measurements on the same unit on successive 

occasions then moderate efficiency gains in the estimate of 

level relative to an overall estimate may be anticipated. Very 

significant efficiency gains are achieved when estimating the 

change between occasions. 

(2) A rotation design possesses the benefits of both independent 

samples and a matched panel but exploits neither to their 

fullest, A matched panel is obviously best for the estimation 

of change whereas a complete turnover on each occasion is 

optimum for estimating the overall mean over several 

occasions. 

(3) When sampling human populations the field costs are likely to 

be lower if the same unit is enumerated on several occasions. 

(4) Once initial contact with a sampling element has been made 

and his confidence gained subsequent interviews may well bring 

improved cooperation from him. 

(5) Increased response resistance is often encountered after 

several interviews with the same respondent. Gray and Cortlett 

(1950) reported a forty per cent defection from a fixed panel 

during the course of five consecutive monthly interviews. 
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Consequent serious biases in estimates were therefore 

anticipated since the sample could no longer be judged as being 

at all representative of the universe. A partial replacement 

design relieves the respondent of an unduly heavy reporting 

burden and therefore assists in maintaining the response rate. 

A matched sample may not be feasible at all if the character 

being measured is of such a nature that the respondent may be 

unwilling to furnish the desired information more than once. 

(6) Continued reporting by a respondent may condition his response. 

For example, in a series of farm management surveys the 

respondent may actually improve his practices because of an 

increased awareness of the value of certain procedures and 

through advice solicited from the enumerator. 

(7) The conditioning of response may be investigated with a partial 

replacement design since entirely new units as well as matched 

units are available for analysis on each occasion. 

(8) A partial replacement design furnishes valuable information 

regarding variances, correlations and costs. These permit the 

implementation of near-optimum procedures because of the 

flexibility of such designs. Mahalanobis (1952) used the terms 

"historical schemes" or "sequential designs" to designate 

surveys whose design is altered over time in view of the 

information compiled in the course of repeated surveys. 

Conversely non-historical schemes or non-sequential designs 

do not make use of the information which becomes progressively 
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available to improve the design of subsequent surveys. 

(9) Defects in the survey procedure are often more quickly observed 

in a matched survey design. 

(10) The quality of current information can be improved through the 

possibility of comparing responses at different points of time 

and rectifying descrepancies either by a second visit or by 

editing rules. Bounded interview techniques wherein the 

respondent is supplied with a record of his previous interview 

responses serve to jog his memory and to fix the time period of 

reference more clearly. The caliber of response in some 

types of surveys may be so improved and the often quoted 

"telescoping effect" minimized. 

(11) By revising past estimates in the light of more recent data 

improved historical series may be made available. 

(12) Rotation designs are uniquely set up to handle the unexpected 

occurrence of large units in the sample which can so greatly 

increase the variance. The reader is referred to Bershad and 

Nisselson (1962) for further details. 

(13) Two-level and multi-level designs exploit the advantages of both 

a complete matching and independent samples to the fullest. 

The possibility of serious memory biases when recall over a 

longer time period is necessary may make such designs highly 

undersirable. 

In this dissertation we shall develop the theory of successive 

sampling with a fixed rotation pattern, i. e., equal sample sizes and a 
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constant replacement fraction, using the Hansen et al. (1955) estimator 

and extensions thereof. Expressions for the estimator of the current 

occasion mean and change between current and previous occasions and 

their variances in a finite population are developed for an infinite cycle 

design. The resulting variance functions under the assumed exponential 

correlation model are of a complex nature. Consequently numerical 

investigations are carried out to estimate the optimum values of the 

various design and estimator variables. The theory is extended to two-

stage sample designs where either primaries or secondaries are 

rotated. A discussion of estimators involving the ratio of two composite 

estimators is given and their application with respect to the estimation 

of the sample mean in two-stage designs is illustrated. Rotation 

designs exhibiting a finite number of cycles are of some practical 

interest. Attention is primarily devoted to a particular two cycle 

rotation design employed by the United States Bureau of the Census. An 

improvement to the Hansen et al. (1955) estimator is suggested in a 

specific design situation where the correlation between successive 

occasions is not monotonely decreasing as the interval between obser

vations increases. In the special case of a one cycle three visit design 

a "multi component estimator" is developed. The derivation of the 

variance function is of some special interest in itself in that the 

solution of a second order difference equation is involved. 

Eckler (1955, p. 668) fairly well summarized the situation with 

respect to rotation sampling when he remarked that "it seems quite 

likely that rotation sampling will be of most value when (a) the 



12 

correlation is high, and (b) it is so difficult to draw a sample that the 

sample size must be kept as small as possible. If it costs no more to 

carry out rotation sampling than independent random sampling, then 

even a modest reduction of five to ten per cent in variance will be 

worthwhile. " 
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H. REVIEW OF THE LITERATURE 

Because the concept of sampling on successive occasions is related 

to the principles of double sampling it would therefore seem natural to 

begin by briefly summarizing the basic essentials involved therein. A 

complete account of the theory is available in most of the standard 

textbooks which dwell on sample survey methodology, e. g., Sukhatme 

(1954). 

Neyman (1938) developed the theory for the following double sampling 

procedure. A large sample of size n' is selected and a character x 

which is correlated with the character y of interest is recorded. The 

cost of securing the x information is assumed to be considerably less 

than that of gathering the y information. This preliminary sample is 

then sub-divided into strata within which the character x varies little. 

If the correlation between x and y is large this should prove to be an 

effective stratification for the y variate as well. A stratified random 

sample of size n < n' is now selected from the n' units and the y 

characteristic is also recorded for these units. The nomenclature 

"double sampling" was coined because of the two sampling investigations 

involved. The estimator of the y mean used by Neyman is a simple 

stratified mean with unknown stratum weights which are estimated from 

the first sample. Expressions for the sample sizes n and n' which 

minimize the variance of the x mean subject to a linear cost function 

are derived. This theory is also presented in some detail by Cochran 

(1953). Extensions to two-stage sampling with an example are to be 

found in Rob son (1952) and Robson and King (1953). 
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Another type of double sampling scheme for the purpose of esti

mating a main character y is that in which a sample of size n' is 

observed for the x character. A random sub s ample of these of size 

n < n' is observed for the y character as well. This subsample serves 

to determine the regression of the main character y on the auxiliary 

character x. The double sampling estimator of Y, the y character 

mean, is 

yds = Y + b(x' - x) 

where x' is the arithmetic mean of all n1 observations on character 

x, x and y are the arithmetic means of the x and y characters 

from the subsample only, and b is the sample regression coefficient 

calculated from the subsample. This procedure is particularly useful in 

situations where the enumeration of the main character is costly but the 

correlated auxiliary variable can be readily measured. Double sampling 

can in fact be regarded mathematically as rotation sampling where the 

current occasion sample is a subsample of an earlier sample. Cochran 

(1939) mentions several examples of the use of double sampling to 

increase the precision of an estimator. Bose (1943) first considered 

the situation where the second sample of size n1 is drawn independently 

of the first. Seal (1951) obtains estimates and their variances for 

sampling with or without replacement at either of the two phases for 

both a single auxiliary variate and many auxiliary variates. 

A theory of double sampling in finite populations is given in Tikkiwal 

(I960). The finite population of size N is regarded as a random sample 



15 

from an (infinite) bi-variate normal population (x^,y\). It is shown 

that the double sampling estimator Y^g is an unbiased estimator of 

Y^, the population mean of the N y\ variates in an "extended sense, 11 

X» S • y 

E(Yds xl* * * * ' XN^ x E^YnI X1'***,XN^ 

A 
where E( | ) denotes conditional expectation. Further the variance V 

of Y, in the extended sense is defined by 
ds 

vorda> * B<yds -7N)2I 

A 
Expressions for E(V(Y^g)) and an unbiased estimator are presented. 

Extensions of this approach are described in Ajgaonkar and Tikkiwal 

(1961). 

The problem of sampling on two consecutive occasions with a partial 

replacement of sampling units was first considered by Jessen (1942) in 

his analysis of a survey which collected farm data. The survey was 

designed so that of the n = 900 sampling units employed in the 1938 

phase of the survey, 450 were retained for further observation in 1939. 

An additional 450 different units were selected to bring the 1939 

sample up to strength. The 1939 sample was thus half independent of 

and half matched with the 193 8 sample. He determined the efficiency 

of this incomplete matching relative to a completely independent 

selection of units on the second occasion as follows. Assuming a linear 

relationship to hold between observations on the same units in 1938 and 

193 9 for a given character, the adjusted mean 
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is an estimator of the population mean, Y, per sample unit of the 

characteristic in 1939. Here x is the mean of all 900 units esti

mating the 1938 mean X, xm and ym are, respectively, the 1938 

and 1939 means of the 450 matched units, and b is the sample 

regression coefficient of y on x computed from the matched units. 

Combining y^ with y^, the mean of the 450 unmatched 1939 

sampling units, by weighting inversely as their variances (y^ and y^ 

being independent) gives the weighted mean 

The variance of y^ is derived under the assumption of an infinite 

population and normality of the x variate. The normality requirement 

is not however needed provided that terms of higher order in 1/n may 

be neglected; this is equivalent to ignoring the variation in b which is 

of the order 1/n^. The estimator y^ was compared in efficiency with 

the unweighted mean y of all 900 units. For fourteen items in the 

questionnaire efficiency gains of from 22 to 45 per cent were achieved. 

Snedecor and King (1942) commented that Jessen's results might perhaps 

have been somewhat over optimistic since one-third of the sampling units 

bore no farmsteads so that the x and y values would both be zero. 

This would lead to higher correlations than one might normally en

counter. They also reported that partial matching techniques provided 

little additional information in the estimation of crop acreages with mail 
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questionnaire returns compared with ratio-to-land estimation tech

niques. Jessen next raised the question of what the optimum match 

fraction would have been given that the 1938 sample had already been 

taken and that, for a given expenditure, the best possible estimate of 

the 1939 mean was required. Assuming the cost of matched and 

unmatched units to be the same, the optimum match fraction was shown 

to be approximately 

m/u = 1/(1 - p^ ) , 

where m and u are the number of matched and unmatched units 

respectively and p is the coefficient of correlation between the 1938 

and 1939 values of a character. He went on to consider the problem of 

allocating N sampling units to the first occasion and u+m to the 

second so that (a) the variance of the sample mean was the same on 

each occasion and (b) that N+u + m was a minimum for given sampling 

variances. His solution was unfortunately invalidated by an algebraic 

error. 

The extension of Jessen's results to the situation where the popu

lation mean of the character is to be estimated on each of h > 2 

occasions was considered by Yates (J. 949). He specified that (a) a 

fixed fraction 0 < X < 1 of the units was to be replaced on each 

occasion, (b) the population variance on each occasion and the corre

lation p between the same sampling unit on successive occasions were 

stationary, (c) an exponential correlation pattern of the type p, p^, 

3 
p ,..., held between the same sampling units separated in time by one, 
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two, three,..., occasions, (d) the correlation coefficient p was 

assumed to be known. The composite estimator considered was 

4  =  ( 1 - Q h ' ^ h , h - l + l j ( y h - l - V l , h " + Q n ° h '  

where ^ ^ and ^ ^ are the arithmetic means of the y character 

observations on occasions h and h-1 respectively computed from the 

units matched between occasions h and h-1 only, and y^ is the 

sample mean on the h-th occasion of the unmatched units only. The 

optimum value of the weight coefficient which minimized the 

variance of y^ was given as a function of p, X, and the total number of 

occasions on which sampling had taken place. With increasing h, 

was observed to rapidly approach a limiting value which depends on p 

and X only. Yates also discussed the estimation of change and the 

possibility of improving the composite estimator of the mean on the 

(h-l)-th occasion by using data provided on the h-th occasion as 

auxiliary information. All of the above results were given by Yates 

without proof. Both Cochran (1953) and Sukhatme (1954) supplied the 

missing details together with further extensions of the theory. In 

particular, the problem of selecting an optimum set of replacement 

fractions on the h-th occasion (1, Xj, X ,...,X^ X^), when X. is 

not restricted to a constant value in time was first solved by Cochran 

(1953). As a working rule he recommended that to retain from one-

quarter to one-third of the first sample on the second occasions and to 

thereafter employ a match fraction of one-half would serve as a good 

approximation to the optimum procedure. A recurrence relationship 
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permitting the systematic evaluation of was derived by Narain 

(1953). 

One of the classical papers on the theory of sampling on successive 

occasions is due to Patterson (1950)» By limiting himself to the 

consideration of best linear unbiased estimators only he was able to 

exploit a property of such estimators and so quickly arrive at variances 

of a compact form. He first developed a set of necessary and sufficient 

conditions for a linear unbiased estimator to be a minimum-variance 

estimator as well. This theorem, which is not given here because it is 

not employed in this dissertation, is also quoted in its entirety by 

Eckler (1955); a set of covariance conditions is essentially involved. 

The results are applied to the problem of determining suitable estimates 

when sampling on successive occasions with partial replacement of units. 

An exponential-type correlation pattern is assumed to hold over time and 

population variances are taken to be equal on each occasion in the 

infinite populations. In the situation where the number of units and the 

replacement fraction are the same on all occasions he derives the 

efficient unbiased estimator of (a) the current occasion mean, (b) the 

change between the current and previous occasions, (c) the change 

between the current mean and the mean k > 1 occasions ago, and their 

respective variances. Modifications of the results when dealing with 

unequal numbers, population variances, or replacement fractions are 

indicated. The problem of arriving at an optimum replacement fraction 

for each occasion is considered. In order to minimize the sample size 

on the current occasion so that variances of the efficient estimators on 
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the current and previous occasions are equal, a replacement fraction of 

one-half after the second occasion is found to be optimum. When p is 

not known or the correlation law is not of an exponential type the loss of 

efficiency in the estimation of means and the bias in the estimation of 

variances is investigated and found to be generally small. 

Eckler (1955) simplified Patterson's approach to one-level rotation 

sampling to some extent by reducing the number of covariance con

ditions to be checked in Patterson's theorem. For two and three-level 

rotation designs iterative solutions for the minimum-variance estimates 

of the current mean are developed. The problem of improving past 

estimates by incorporating more recent data is discussed for the two-

level case. A simple procedure yielding constant variances in an 

estimate over time with a two-level design is presented. He derives a 

criterion for deciding upon what level of rotation design to use by 

setting up a cost function involving the additional cost of securing past 

information as well as the current information on one visit. 

Considerable attention has been devoted to the rotation sampling 

problem by Tikkiwal. In (1951) he develops the univariate theory for 

sampling on successive occasions by relating it to a lemma concerning 

the multiple regression of a p-th variate on p - 1 other variates, the 

joint distribution of all p being multivariate normal and the dispersion 

matrix of a somewhat more general form than that of Patterson. The 

possibility of improving the current occasion estimator by the inclusion 

of ancillary information provided by other characteristics correlated 

with the character under study is considered. Under a particular 
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correlation structure he shows that the best linear unbiased estimator 

does not utilize such information. In a stratified sample design the 

optimum allocation of matched and unmatched units to strata which 

minimizes the estimate of the overall mean subject to a linear cost 

function and fixed total sample size on each occasion is derived. In the 

special case of constant population and sample sizes in each stratum the 

optimum match fraction is shown to be identically equal to one-half. If 

the correlation coefficient is also the same in each stratum the optimum 

allocation is in fact the familiar Neyman (193 4) allocation. Somewhat 

more general results giving the optimum allocation as the Neyman 

allocation plus a correction term are presented in Tikkiwal (1953), the 

sample and population sizes being permitted to vary over time. 

In his Ph.D. thesis Tikkiwal (1955a) examined the problem of 

establishing a suitable sampling scheme for the estimation of k_> 1 

characters on each of h_> 2 occasions. The design was such that the 

i-th (i * 2, 3,..., k) character on any occasion is always studied on a 

portion of the sample on which the (i- l)-th character is measured. If 

the correlation between the i-th character on the r-th occasion and 

the j-th character on the s-th (s_> r) occasion is denoted by p^g , 

then the following correlation structure is assumed to hold: 

JLr 1 
(a) if i = j, r if s, P;s  = = Prs  

where p, is the correlation between measurements on the rt, t+1 

same character on the t-th and (t+l)-th occasions; 
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(b) if i * j, r = s, p^r 

j-1 

" T T / i - . f + i  -  " i j  

where p!, ^ . is the correlation between the t'-th and rt , t +1 

(t'+l)-th characters on the same occasion; 

(c) If i * j, r 4 s, p^s = p% . prg . 

The development of estimators and their variances in an infinite popu

lation hinges upon the assumption of a joint multivariate normal distri

bution for the k characters under the above correlation pattern. The 

theory is extended to cover finite populations of size N by employing a 

vague super -population concept. The normality assumption is not 

required since the estimators are shown to satisfy Patterson's (1950) 

conditions for a best estimator. The consequent variance and co-

variance relationships are utilized to derive variances of the estimators 

where correlation and regression coefficients are assumed known. The 

finite population results are also reported upon in Tikkiwal (1954) and 

(1955b). In a finite population it is possible to exhaust all of the sample 

units so that a sub sample of new units cannot be selected. Tikkiwal is 

forced to assume that the units thus sampled are uncorrelated with the 

values they assumed when sampled some occasions earlier; the fact 

that they are treated as new units just the same contradicts the finite 

population assumption. It is the author's opinion that Tikkiwal's finite 

population theory is inadequate because (a) the super-population concept 

is unrealistic, (b) the sampling procedure is not carefully specified 

when the population is finite. 
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The variance of the minimum-variance estimator of the population 

mean is derived by Tikkiwal (1956b) when the various regression and 

correlation coefficients are estimated from the sample. In (1958a) he 

shows that whenever there is matching the efficiency of the best linear 

unbiased estimator relative to the simple mean increases with in

creasing time. The limiting value is approached more slowly for higher 

absolute values of the correlation coefficient but the convergence is still 

more rapid than that indicated by Yates (1949). In Tikkiwal (1958b) 

results for two-stage sampling are reported; it is assumed that the 

primary sample units of fixed size M are rotated and that a sample of 

size m is selected from each sampled primary. 

Narain (1954) supplied a composite multiple regression type 

estimator of the mean on the h-th occasion which involved the arithme

tic means on each prior occasion of those units still present on the h-th 

occasion. This estimator was claimed to be best but no proofs of any 

statements were provided. 

The theory of sampling on successive occasions is applied by 

Tikkiwal (1956a) to data collected from a series of quarterly farm 

surveys concerning livestock production and marketing in the State of 

Iowa (Maki and Strand 1961). With some simplifying assumptions 

relating to the actual survey design efficiency gains ranging from 1 % 

to 89% over the simple arithmetic mean were calculated for the 

various occasions and characters investigated. 

The sampling and statistical aspects of the use of remeasured 

permanent plots and partial replacement of the initial sample for forest 
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inventory are treated by Ware and Cunia (1962). The cost situation 

differs from that encountered in the sampling of human populations where 

the field costs would be expected to be lower if units are retained for a 

number of occasions. In forest inventory remeasured permanent plots 

will usually cost more than temporary ones because of the expense in 

marking, surveying and mapping permanent plots to facilitate identifi

cation at a later date. Optimum sampling plans under such a cost 

structure are derived. They recognized that although both growth and 

current volume are of equal interest in forest inventory, the optimum 

sampling plans for each do not coincide. A non-linear programming 

solution to the dilemma is presented. With respect to this last problem 

Mahalanobis (1952) had earlier suggested that a decision theory approach 

involving a risk function might perhaps be adopted. Cochran (1963) 

recommends the retention of 3/4 of the sample from occasion to 

occasion as a good practical solution to satisfying both requirements 

simultaneously. 

Hansen et al. (1953) presented a simplified composite estimator to 

be used in sampling for a time series. They considered a two-level 

design with twelve independently selected random samples. One of the 

twelve is enumerated during January of each year, the second during 

February, and so on. If x^ and y^ ^ represent the simple unbiased 

estimators of the population totals for the h-th and (h - l)-th months 

from the h-th enumeration, then the composite estimator x^ of the 

population total on the h-th occasion is given by 

xi, = QH-i + - ^h-i1 +11 - Q|xh 
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where 0 < Q < 1. Under some simplifying assumptions the variance of 

the monthly total x^, of the month - to - month change x^ - x^_^ , of the 

1 2  
twelve month total 2 x! , and of the year-to-year change xJ - x' , _ 

i=l 1 n n~ c 

are derived. 

The approach to rotation sampling in a finite population followed in 

this dissertation was inspired by the preliminary work of Onate (1960c). 

He proposed a rotation plan for introduction into the Philippine Statistical 

Survey of Households for the prime purpose of minimizing the response 

resistance of panel households. The secondary sampling units (barrios) 

were to be split into segments. A rotation group within a barrio 

consisted of three segments; two segments were to be common from 

visit to visit and one segment common from year to year. A finite 

population theory was developed for the special case of five segments in 

a barrio by considering the 5] possible orderings of the design and the 

Hansen et al. (1955) composite estimator. Accounts of the theory may 

be found in Onate (1960a) and Onate (1960b) as well. 

Rao (1962b) further developed the theory of rotation sampling from a 

finite population of arbitrary size N for a one cycle pattern. Since the 

theory presented in this dissertation is an extension of this preliminary 

research and contains the one cycle design as a special case, no details 

are given here on Rao's work. Schach (1962) carried out a numerical 

investigation of Rao's formula in order to obtain approximations to the 

optimum values of the weight coefficients in the composite estimator and 

to the optimum number of visits by a unit. Specific reference to 
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preliminary results obtained in this dissertation is given in Rao and 

Graham (1962). 

In February of 1954 the U.S. Bureau of the Census instituted 

design revisions into the Current Population Survey (C„ P,S„ )„ This 

monthly survey compiles information on employment and unemployment 

and related data; information on other national and regional character

istics such as income distribution, marital status, migration and 

education are compiled at less frequent intervals. Hansen jet al. (1953) 

contains a full account of the sample design as it existed before the new 

features were implemented. At that time a rotation of sampling units 

was employed for the sole purpose of reducing the nonresponse rate. 

There were administrative advantages in introducing new units on a 

staggered basis since substantial costs are involved in introducing a 

household into the sample for the first time. Hansen et al. (1955) give a 

comprehensive summary of the new design features of the C. P.S. 

Essentially, a rotation group remains in the sample for four consecutive 

months, drops out of the sample for the next eight months, and returns 

for another four months. It then drops out of the sample completely and 

does not return again. The composite estimator developed was of the 

form 

xh = Q(xh-i+xh,h-i -xh-i,h)  + <1-Q)xi 

where 0 < Q < 1, 

X^' is the composite estimator for month h, 
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is the regular ratio estimator based on the entire 

sample for month h, 

XJ , . is the regular ratio estimator for month h made 
n,h-.L 

from segments that are in the sample for both 

months h and h-1, 

Xji ^ k is the regular ratio estimate for the previous month 

(h-1) made from segments that are in the sample 

for both months h and h-1. 

The developments in Chapter III of this dissertation will be based 

upon a composite estimator of the same general structure as that of Xj^ . 

A description of the sample for the U.S. Monthly Retail Trade 

Report which includes a discussion of the composite estimator and its 

variance is given by Kailin (1955). Neter and Waksberg (1961) report on 

a four visit rotation design which permitted the study of the effects of 

different interviewing techniques on the same households over the course 

of time. The design was also advantageous in that the estimation of 

differences between occasions was also of major concern. 

The Monthly Retail Trade Survey, conducted monthly throughout the 

United States to report on various characteristics of retail stores, is an 

example of two-level rotation sampling (Woodruff (1959) ). It employs a 

stratified two-stage design with a rotation feature supplemented by a 

fixed list sample of the largest retail outlets. One primary sampling 

unit, a county or county-group, is selected from each of 230 strata 

covering the entire United States. The secondary sampling units are 
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area segments containing an everage of four retail stores and are 

selected at an over-all rate of six per cent. The sample is subsequently 

divided into twelve panels, each panel being a one-half per cent sample 

from the population. The panel is completely rotated each month so that 

the same panel is interviewed on the same month each year. At the 

time of interviewing for the i-th month information concerning the 

(i - l)-th month is also gathered. Such a design is obviously more 

efficient than that employed by the Current Population Survey since an 

entirely new panel is available each month in addition to a complete 

panel match with the previous month. In the C. P. S. sampling situation, 

however, two-level sampling would be inadviseable due to the possibility 

of rather severe memory biases occurring. The Monthly Retail Trade 

Survey features a preliminary composite estimator published for the 

h-th month based on data available up to that time. A subsequent 

revised composite estimate is issued a month later which utilizes 

information furnished on the (h+ 1 )—th month pertaining to the h-th 

month as well. The gain in efficiency in so doing is believed to outweigh 

the possible inconvenience caused by two sets of estimates. 

Bershad and Nisselson (1962) explored the feasibility of using a 

pattern of weekly surveys rather than a single monthly survey based on 

a systematic sample of weeks. They assumed that a respondent could 

provide adequate information covering the previous two time periods 

(weeks) but that any longer recall period would not yield satisfactory 

data. It was also assumed that monthly statistics were of prime 

importance and these would be published at the end of each month. Four 
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rotation sampling plans were considered: (a) "50 -75 -50 Plan" 

characterized by a 50 per cent overlap in information from week to 

week, a 75 per cent sample overlap from month to month and a 50 per 

cent sample overlap from year to yearc This is accomplished by 

collecting two weeks data at each interview and interviewing a given unit 

for one week of each month for four months, dropping it out of the 

sample for the next eight months, and then repeating the procedure for 

the next four months; (b) "50 - 0 - 100 Plan" characterized by a 50 per 

cent overlap in information from week to week, no monthly sample 

overlap and a 100 per cent yearly overlap. Only one interview per 

year is taken; (c) "50 - 50 - 100 Plan" characterized by a 50 per cent 

weekly information overlap with 50 per cent monthly and 100 per cent 

yearly sample overlaps. After two interviews one month apart a unit 

drops out of the sample for the next ten months and then returns for 

another two months; (d) "X - 75 - 50 Plan" with no overlap in 

information. This is the C. P. S, sample design described earlier. 

Numerical analyses showed that the first three plans were superior to 

the fourth in supplying monthly averages but that each of the four plans 

displayed certain advantages when estimating changes over various 

time intervals. 

In view of the extensive use of rotation sampling as substantiated by 

the above references, it would appear that any further research con

ducted in this area would certainly not be superfluous. 
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HI. ROTATION SAMPLING WITH INFINITELY MANY CYCLES 

A. The General Rotation Pattern 

Consider a population P whose size N remains fixed over time, 

with no units immigrating into or migrating from P. Samples of size n 

are selected from P on occasions 0,-1,-2,..., where 0 denotes the 

most recent or current occasion, according to the following rotation 

pattern. A rotation group consisting of n., (3 1) units remains in the 

sample for r _> 2 consecutive occasions so that n * rn^ • It then leaves 

the sample for m occasions, returns for another r occasions, drops 

out for m more occasions, and so on. Any rotation group is said to 

make infinitely many cycles in order to distinguish the pattern from 

other designs to be considered later. The maximum value of m is 

obviously r(N/n - 1). If m is less than its maximum value then the 

rotation is, in fact, taking place within a subpopulation of size 

N1 = (m + r)n^ from P. It will be assumed initially that the rotation is 

imposed on all N units of P and hence that N = (m + r)n^. This 

restriction will be removed in D. The case m_> r will be considered 

in detail; the case m < r is exceedingly more complex and less useful 

in practice and a discussion has been relegated to the Appendices. An 

example of the foregoing rotation pattern is presented in Figure 1. 

The general rotation pattern is established in the following manner. 

The units in P are randomly assigned integers from 1 to N. The 

first n^ units comprise the first rotation group, the second n^ units 

the second rotation group, etc. There are a total of Ni possible 

rotation patterns that can be so formed by taking all permutations of the 
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N units. Any given unit will appear in a given rotation group in (N-l)i 

of these randomizations since it necessarily appears in every group an 

equal number of times. The particular rotation pattern observed is 

therefore one random pattern selected from a finite population of NI 

rotation patterns. 

Unit Occasion 
number -6 -5 -4 -3 -2 -1 0 

1 
2 
3 
4 
5 

X 
X X 

X X 
X X 

X 

X 

X 

X 
X X 

X 

Figure 1. General rotation pattern with N = 5, n = r = 2, and m = 3 

B. The Simple Composite Estimator of the Current Occasion Mean 

Let x . denote the value of the characteristic being measured for 
a, k b 

the k-th unit on the a-th occasion (a = 0, -1,,.., -u, and 

k = 1,2,..., N), where -u + 1 is the occasion on which a composite 

estimator of the current occasion mean is first employed. It will be 

assumed that sampling has taken place for several occasions in the past 

so that u is large. This will introduce certain simplifications in 

deriving variances in subsequent sections. 

The simple composite estimator of the current occasion population 

mean, XQ , is 
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xô = Q(xli + xo, -i - x-l, 0} + {1 " Q)x0 ' (3*1} 

where 0 < Q < 1 , 

and 

nl nl n 

Xq, a-1 = J1
xa,k /nl1 Xa-l,a"^Xa-l,k^l' Xa = ^ Xa, k /n» 

and x1 j is the simple composite estimator for occasion -1. Here 

n1 = (r-l)n? is the number of units common to occasions a-1 and a, 

and n_, is the number of units entering the sample for a first visit of 

some cycle on occasion a. 

Now XQ can be written as 

-u -u N 
x' -
- 0 -  J o Q " 1 W - -  J o J i V -A (3-2) 

where 

Wa " Q(*a, a-1 " *a-l, a> + (1 " Q)*a (3-3) 

for a * 0,-1, ..., -u + 1, and 

w-u = *.u • e-4i 

The weights Wq ^ are functions of Q, r and n^. 

From (3.3) and (3.4) it is seen that the weights w^ ̂  areas 

follows: 

(1) For q * 0 (current occasion), 
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(a) wn , * (l-Q)/n for the n units on the 1-st visit of 
Uj K « 

a cycle, 

(b) wQ k « (1-0)/n + Q/nj * (1 + n^Q/n^/n for the n^ 

units on the 2-nd to r-th visit of a cycle, 

(c) Wq  ̂  = 0 for the N-n units not in the sample. 

For a * -1, -2,.-u + 1, 

(a) k = Q~a(l-Q)/n - Q~a/n1 = - Q °"(n^/n^ + Q)/n for 

the n^ units on the 1-st visit of a cycle, 

(b) Wq k = Q"a(l-Q)/n + Q a+1/n1 - Q °/n1 = Q ^n^Q-l)/nn^ 

for the n. - n units on the 2-nd to (r-l)-th 
1 2 (3.6) 

visits of a cycle, 

(c) wQjk « Q"a(l-Q)/n + Q"a+1/n1 = Q'^O/nj + l)/n 

for the n^ units on the r-th visit of a cycle, 

(d) k x 0 for the N-n units not in the sample. 

For a x -u, 

(a) w , « QU(l/n - 1/n,) for the n, units on 1-st to -U, K I J. 

(r-l)-th visits of a cycle, 

(b) w u k = QU/n for n^ units on the r-th visit of a cycle, 

(c) w ^ k x 0 for the N-n units not in the sample. 

(3.7) 
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Let E denote expectation over the Nl possible rotation patterns. 

Then 

^ " E(i 11= I,X°.*E(W°.k» + J. I  JiX=.kE(w=.=> 

Now 

N N 
E(wn ,)= 2 (N-l)I w0 /Ni = 2 w /N= 1/N, 

U 'k k-1 U,K k=l U,K 

N N 
E{w . ) = 2 (N-l)i w . /NI = 2 w . /N = 0, a< 0. 

Q 'k k*l a,k k=l a»k 

Hence 

and XQ is an unbiased estimator of XQ . 

C. The Variance of the Simple Composite Estimator of the 
Current Occasion Mean 

1. A general variance formula 

In order to simplify the derivation of the variance of XQ , V(XQ), it 

sill be assumed that u is large so that 

_ -u N . -oo N 
x '  =  2  2  w  ,  x  .  *  2  2 w 1 x 1 .  

0 a=0 k=l Q>k Q,k Q=0 k=l a 'k Q 'k 

The error so introduced into the variance function will be negligible if u 

is at least moderately large since the weight variables w^ ̂  decrease 

exponentially as a becomes more and more negative. We will 
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henceforth use strict equality signs assuming that -u is effectively at 

- co. Now 

v(5;,) = e(^)2 - x2 

-oo N - ? -co N 

= Jo £ EK,k«a.,k)xa,kVk " ^ 
=0 

-co N -oo N 

+ aï» kJk,E(%kWa,k''xa,kxa,k' + Ja,̂ k,E(wa,k-a.,k^a,kxa.,k" 
=1 =0 =1 

(3.8) 

N N 
Since 2 w„ 1 = 1 and 2 w , = 0 for a < 0, it follows that 

k=l U,xC k=l a,K 

E<»0,kw0,k'> = Jk,w0,kw0,k' /N<N-1)= '/NCN-D - E(w0
2

ik)/(N-1), 

= 1 

E<wa,kw«,k')l= -E(w^k)/(N-D. a< 0, (3.9) 

E(wa,kWa',k')!I  "E(wa,kwa',k) /(N"U ' a= °'-1>"2 

Substituting (3.9) into (3.8) gives 

_ -co N -, - -co N 
V(;o' - J0 k: XkE '»a,k> + Ja,EK,k™-',k>k=*a.k>V,k 

=0 

-oo N N _ 

- xa,kxa,k' + ^k^O.k' ^ 

*1 *1 
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N -oo N 

" E 'W°. k>W X0,kX0, k'/f"-1 '- Ja, EK, kwa', k»^, *a, kxa',k' 

*1 =0 =1 

(3.10) 

Let S2 be the mean square for the a-th occasion and S , be 
a a, a' 

the mean product between occasions a and a' , 

(3.11) 

N 
S. ., = ( Z ,x , v- NX X ,)/(N-l), 

•»** k=l a,k a ' ,k a a ' a. a 

where Xq is the population mean on the a-th occasion. Then (3.10) 

becomes 

-> ? ? 2 
V{x^) = (NE(w^) - 1/N)S2 + N J^E(w^)S2 

(3.12) 
-oo 

+ N Jt.E(W«.kWa',k)Sa,a'-
=0 

It is worthwhile noting that (3.12) is a general formula for the 

variance of any estimator that can be written in the form 

-oo N 
2 2 w , x . where the w , are any weights which satisfy the 

a=0 k=l a 'k Q 'k a 'k 

N N 
conditions 2 wn . « 1 and 2 w , = 0 for a < 0. 

k=i °-k k=i a>k 
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2. Infinite cycle variance with unspecified correlation structure 

The weights for the general infinite cycle rotation pattern are given 

in (3. 5) and (3.6). It is easily verified that 

NE(W0, k> = W0, k • (1 + n2 °2 /°1 » . 

N 
NE(w s-2a,_2 J= 2 w , = Q {Q + 2n_ Q/n +l)n_/nn , a < 0. 

a, K k_ ̂  a, K c i c i 

A careful consideration of the rotation pattern is necessary when 

evaluating the cross-product expectations E(w ,w , , ). The term CLJ K CI J K 

E(wn , w .. . . ), £ = 1, 2,..., is developed in some detail in (a) 
Uj xC -xir+mj-ij K 

below so that the procedure will be clear. Final results only are 

quoted for other terms. 

N 
(a) NE(w0jkw.f(r+m). l jk) = ^2 w0ikw_ j(r+m)_1#k 

= ^(l-Q)/n 
n2 ~ 

( l + n 2  Q / n 1 ) / n  

+ |^(l+n2 Q/n^/n Qi(r+m)-fln2(Q_1)/nn-

Q£(r+m)+l ^/n^ + Q)/n) 

(n
r
n

2) 

n. 

- Q£(r+m>+1 (l+n2 Q/n^2 n2/n2 , i * 0, 1, 2,..., 

for if (1) if a unit is on the first visit of a cycle on occasion 0 it is 

necessarily out of the sample on occasion -i(r+m)-l, (2) if a unit is on 

the 2nd visit of a cycle on occasion 0 it is necessarily on the first 

visit of a cycle on occasion -i(r+m)-l, (3) if a unit is on the 3rd, 

4th,..., r-th visits of a cycle on occasion 0, it is necessarily on the 
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2-nd, 3-rd,..., (r-l)-th visit respectively of a cycle on occasion 

-i(r +m)-l. Thus 

oo 

•(a) N
1ï0

E(wO,kW-»(r+m)-l,k)S0, -i(r+m)-l 

i—0 

œ  

(b) N £ E(w0) kw.{(r+m)> k S0j _1(r+m) 

= £ "2(n2 + a1(r+mH1 S0, -i(r+m) / lml ' 

oo -r+2 

tC) N£-0 t-S-2 E(W°» kW-je(r+m)+t, k)  S0, -i(r+m)+t 

= J^Qi(r+m) j^2 Q-tn^l+^Q/npWQ-D-riS^^^^^njn2 . 

OO 

(d) N i E(w0,kW-i(r+m)-r+l,k)S0, -£(r+m)-r+l 

= - 2 Q n2^Q+n2^nl ̂ n2 Qy,nl+1 * S0, -l(r+m)-r+l ̂  * 
0 

It may be verified that (a), (c) and (d) sum to 

j?Q1(*+m)n2(l+n2Q/„1) V Q t(t{l-Q)-r)S0> .,(r+m)„ t/-1n2 . 
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oo 

^ ^ ̂ qE^W0» kW-i(r+m)-m-l, k^O, -i(r+m)-m-l 

oo 
= 2 Q' 
i=0 

i(r+m)+m+l 
n2^ +n

2
Q/niH1 -0)So3 -j(r+m)-m-l /n 

oo m-r 
(£) N =0 ^=0 E(W03kW-£(r+m)-r-t,k)S0, -i(r+m)-r+t = ° ' 

for if a unit is in the sample on occasion 0 it is necessarily out of the 

sample on occasions -£(r+m)-r, -i(r+m)-r-1, ..., -i(r+m)-m. 

oo r-1 
(g) N 

t^2 
E^W0, kw-m-t-£(r+m), k^ S0,-m-t-£(r+m) 

2 Q i(r+m)n? s' Qm+t 

1=0 t=z 
n(l +n^ Q/n^)/n^ - n^ nQ(Q - l)/nj 

+ n2(Q - 1)(1 +n2 Q/n^)t /n^ S0, -i(r+m)-m-t 

-co oo r-2 

^ N ax^-l £=0 t=l E^i* k^a-t-£(r+m), k^ ^a, a-t-i(rtm) 

•oo oo r-2 

= - J., So =, * > - Q)Z tQ ' 2an Qltr+m,Sa,-t- t(r+m, /"24 

-oo oo 

^ ^ q_^_i E^Wa, kWa-r+l-i(r+m), k ̂ a, a-r+1-i(r+m) 

2 2 Q~2a+r_1n (1+n Q/n )(Q+n /n )Q i(r+m) 

a=-li=0 

^a, a-r+l-i(r+m) 
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-oo oo m-r 

^ N a^-1 i=0 t=0 E^Wq» kWa-£(r+m)-r-t, k *Sq, a-i(r+m)-r+t 

-oo oo 

^ N qJ'-I i*0 1L^Wq3 k^a-m-1 -i(r+m)3 k '  ̂a3 a-m-1 -{(r+m) 

-oo oo 
n-(l+n-Q/n.)(Q+n /n ) 2 2 Q-2a+m+1+£(r+m) 

Z ù 1 Z a=-l 1=0 

c , 1  
a, a-m-1 -i(r+m) 

-oo oo r-1 

(1) N ^2^ ^ 2^ E(w
aj!c

w
a.m. t.|(r+m) j  k ̂  Sd, a-m-t-i(r+m) 

x 2 2 2 4 (t-r)(Q-l)2 Q"2a+m+t+£(r+m) 

a= -1 1=0 t=Z ^ 

C  , 2  
a, a-m-t-i(r+m) 

-co oo 

^ N ax'-l 1=1 E^Wq» kWa-l(r+m), k ^ ^a, a-i(r+m) 

= 2 n (Q2 + 2n_Q/n. +l)Q™^a 2 Q^r+m> 
a=-l Z & 1=1 

^a, a-l(r+m) ̂ nnl 

Substitution of the preceding terms into (3. 12) yields 

V( x ô  )  =  (Vn  -  1 /N)SQ +  Q 2 n 2  S 2 / ( nn^ )  

• 2n2(l+„2Q/„ lHl-Q,Q
m+1£ Q«(**»>S0> -J(r+m).m-l /-' 
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+ 2n2 (n2 +Qnj)Q £ Q^+m) S0> _1(r+m, /(nnf ) 

+ 2n2 S Qm+t 

t-2 
(rn^+2n Q-nQ2 )/n^ + (Q-lJtl+n^ Q/n^) t 

Jo Q '<r+m)s0, -m-t-i(r+m) / 'n2nl)  

+ 22 nf (l+n,Q/n.)Q i(r+m) 21 Q^ta-QJ-r) 
1=0 * 1 t=l 

S0, -l(r+m)-t^nln * 

? -°° -, -, 
+ n„(QJ + 2n.Q/n1 +1) 2 Q~^a /(nn. ) 

L Ù 1 Q=-l C 

+ 2 
a£1-2(Q2 + 2n2Q/"l + 1 'Q"2<1 £ Qi<r+m,Sa,a-i(r+In)/(•»!' 

' 24< l-Q>2 J, £ tQ"2°+t |oQ , (r+m,Sa-i„ t.1(rtei)/(n2„f) 

2n (l+n Q/n )(Q+n /n ) 2 Q-2^™1 2 Q j(r+m) 

a=-l 1=0 

^a, a-r+1 -l(r+m) 

2n (l+n Q/n )(Q+n /n ) 2 Q-2a+m+l s Q*(r+m) 
a=-l 1*0 

S / 2 

a, a-m-1 -!(r+m) n 
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+ Znl (1-Q)2 2 2 (t-r)Q"2a+m+t 2 Q£(r+m) 

a= -1 t=2 1=0 

2 2 
^a, a-m-t-£(r+m) nl ̂  

(3.13) 

Equation (3.13) will be valid for all r_> 2 if the convention that 

b 
2 ( ) = 0 if b < a is adopted. 
a 

3. Infinite cycle variance with Markoff type correlation structure 

Assume now that 

< ' s0- Sa,a+t - S0,t 
(3.14) 

and also that a Markoff type correlogram holds, i. e., that 

SQ ^ ~ P SQ , (t = -1, -2, -3,,.. ) . (3. 15) 

Then, after a great deal of tedious algebra, (3. 13) reduces to 

V(XQ ) = (l/n-l/N)S2 + 2n2QS2 { Q2 (rp2 - (r2 + l)p+r) 

+ Q(r(r-l)p2 - 2{r-l)p + r(r-l) ) - (r-l)2p + Qrpr  1 Q2(-(r-l)p2 

+ r(r-l)p ) + Q(-(r2- 2r + 2)p2 + 2rp - r2) - (r-l)p2 + r(r-l)p 

+ Qmpm+1[Q3(-r 2 p2 +r(r+l)p-r) + Q2(2r(r-l)p - (r-l)(r+l) ) 

+ Q( -r(r-l)p - (r-l)(r-2) ) + (r-1) 
, ^m+r m+r + Q p Q3 (r(r-l)p2 

r(r-l)p ) + Q2(rp2 + (- 2r2 + r - l)p +r2) + Q( (r-l)(r-2)p 
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+ r(r-l)) + (r-l)p + r(r-l) ] } /n2n2 (1 - Q2 )(1 - Qp)2 (1 - (Qp)r+m ), 

(3.16) 

which is valid for all r  >  2 .  

It is noteworthy that in equations (3.13) and (3.16) the finite 

population correction factor effects only the current occasion term. 

This is in agreement with Tikkiwal (1955a) who reached the same 

conclusion using a super -population argument. 

It should be emphasized that (3, 13) and (3,16) are valid only when 

m_> r . The case m < r is more difficult and is dealt with in the 

Appendices. 

Rather than constant Sq = as in (3.14) one could more 

generally assume the presence of a geometric trend in Sq, 

S. = S(,k\ 

where k is either greater than, equal to, or less than unity. The case 

of constant S2 is therefore included. The variance formula appropri

ate to the case k 4 1 is reproduced in the Appendices and no further 

reference will be made to it. 

4. The static population check on the calculations 

Because of the unduly heavy calculations involved in arriving at the 

final form (3. 16) of V(x^ ), it was deemed essential that some check 

be performed to ascertain the correctness of the formula. A rather 

obvious check is that when 0=0 in (3. 1) then XQ * x^ and hence 

V(XQ ) = (1/n- 1/N)S2 . Setting Q = 0 in (3. 16) gives the same result. 
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A more searching check is achieved under the assumption that the 

population is static over time. Then xq ^ = x_j k 
= x_£ ^ * ... , for 

k = 1, 2, Thus a stationary covariance structure holds good and 

the coefficient of correlation p is unity. It follows that pŒ se 1 for all 

a so that the exponential correlation model is valid in a trivial sense. 

V(XQ ) may now be derived directly. Since x^ 1 = x 1 0* it follows 

that 

_ oo 
x' = (1-Q) 2 Q x . (3. 17) 

0 t=0 _t 

Hence 

>2 5" _2t,r/  — , , , ™ _t_T 
V(x' ) * (1-Q) 2 Q V(x ) + 2 2 Q Q* COV(X ,  X ).  (3.18) 

U t=0 " t < T  
=0 

Now the variance of a random observation xq ^ from a population 

P of size N is by definition 

V(xQik)« <r* = (N-1)S*/N, (3.19) 

and the covariance between two observations x . and x v» ( j 4 k), 
a, j a,k 

selected at random and without replacement from P is 

Cov(x ,x^k) = - TQ /  (N-L) = -SQ/ N .  ( 3 . 2 0 )  

The latter is a familiar result and no proof will therefore be given. 

With the aid of (3.19) and (3.20) it may be verified that 

V(x_ t) = (1/n - 1/N)S* , (t= 0,-1,-2,...,) , 
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Cov(x_ t,;_ t_s_ i(r+m))« (n2(,-s)/„2 - 1/N)S2 , 

(1< s < r, £=0,1,2,...,), 

=-S2/Ns (r< s< m, £ = 0. 1,2,....), 

= ( ( s-m) n2 /n2 - 1/N)S2, (m < s < r+m, £ = 0, 1, 2,..., ). 

Substitution of these values into (3.18) gives 

9 ? ^ 2t 
V(xL) * SjT(l-Q) ( 2 Q (1/n-l/N) 

u u t=0 

+ 2 S 2 2 Q2t+S+£(r+m)((r-s)n /n2 - 1/N) 
t*0 s=l £=0 

- 2 2 T 2 Q2t+r+s+i(r+m) /N 

t=0 ô=0 £=0 

+ 2 2 2 2 Q
2t+m+s+i(r+rn) (sn /n2 - 1/N)) , (3.21) 

t=0 s«l£=0 

= (1 /n - 1 /N) S2 + 2n2 S2 ( -Q + 2Q2 - Q3 + Qr+1 - 2Qr+2 + Qr+3 + Qm+1 

-2Qm+2 + Qm+3 -Qm+r+1 +2Qm+r+2-Qm+r+3)/n2(l-Q2)(l-Q)2(l-Qr+m) 

= (l/n-l/N)S2 + 2n2QS2(-l+Qr+Qm-Qm+r)/n2(l-Q2)(l-Qr+m). (3.22) 

Putting p = l in (3.16) will reduce it to (3.22), thereby pro

viding the check. 

The static population assumption is employed throughout this 

dissertation in verifying formulae which require extended algebraic 
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simplifications. It is a penetrating check on the validity of the numeri

cal coefficients and on the exponents of Q in such relationships. That 

the exponents of p are not established is perhaps the sole barrier to 

the infallibility of the method. 

5„ One cycle variance as a special case 

A one cycle rotation pattern may be regarded as a special case of an 

infinite cycle rotation design by taking m = oo. A rotation group 

therefore remains in the sample for r consecutive occasions and 

drops out for m = oo consecutive occasions before returning for a 

second cycle, i.e., it never returns. Under the covariance structure 

specified by (3.14) and (3.15) the variance of XQ, the composite 

estimator of the current occasion mean, is found by setting m * co in 

This formula is strictly valid only when (a) the first enumeration 

took place on occasion u = -oo, (b) the population N is infinite. If 

N is not large then it is not possible even to approximate a one cycle 

design. 

It is of some interest for purposes of comparison to evaluate the 

(3. 16). Thus 

V(XQ ) = (1 /n - 1 /N)S2 + 2n2 QS2 ( Q2 (rp2 - (r2+l)p+r) 

+ Q(r(r-l)p2 - 2(r-l)p + r(r-l) ) - (r-1)2 p + Qr  pr  * Q2 • 

(-(r-1 )p2 + r(r-l)p) + Q(-(r2-2r+2)p2 + 2rp - r2) 

(3.23) 
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variance of XQ under the assumption that an arithmetic rather than an 

exponential correlation structure holds over time. In order to reduce a 

very tedious algebraic derivation, the investigation was restricted to a 

one cycle rotation design (m = 00). A stationary covariance structure 

as in (3.14) is still assumed but (3.15) is now replaced by 

SQ * (p + ( t + 1 ) d) S2 when -(t + 1 ) d < p , 

(3.24) 

= 0 when -(t + 1 ) d > p , 

where d > 0 and t = -1, -2,... . Thus the correlation between 

measurements on the same character decreases according to p,p - d, 

p - 2d,..., 0 as the number of occasions between observations in

creases. It is assumed in the variance formula given below that 

p + (- r + l)d>0, i.e., that matching only takes place between units that 

are positively correlated. Setting m = 00 in (3. 13) and substituting 

(3. 24) yields after considerable simplification 

V(XQ) = (1/n - 1/N)S2 + 2SQ [ Q2(r(r-l)-r(3r-4)Q + 3r(r-2)Q2 

-r(r-4)Q3 -rQ4) + Qp(rQ5 + r(r-4) Q4- (2r2 - 4r - 1)Q3 + (2r-3) Q2 

+ {r-l)(2r-3)Q-(r-l)2) + Q2 d(rQ4 + r(r-4) Q3 - (r2-2r-2)Q2 

-(r-2)2Q + (r-l)(r-2) ] /(r2 (r-1)2 n2 (1 -Q2 )(1 -Q)3 ) 

+ 2S2 Qr+Id((r2-4r + 2)Q3 - (3r2 - I0r + 4)Q2 + (3r2-8r + 2)Q 

- r{r-2))/(r2(r-l)n2 (1-Q2)(l-Q)3 ) + 2S2 Qr+1 p/(r2 n2 (1-Q2 ) ) . 

(3.25) 
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A numerical comparison between the two types of correlation 

models may be found later in Tables 4 and 5. 

D. Generalization of the Sampling Procedure 

The preceding discussions have been based on the premis that the 

rotation pattern is specified for all N units in the population P. A unit 

remains in the sample for r occasions, drops out for m occasions, 

returns for another r occasions, and so on. This rotation scheme 

necessarily requires that N = (r+mjn^ where n^ is the size of a 

rotation group such that rn^ = n. It is thus requisite that after a given 

rotation group has dropped out of the sample, all other rotation groups 

must be represented in the sample on succeeding occasions before that 

same rotation group can return for a first visit of another cycle. Such a 

rotation plan is obviously lacking in generality. 

Consider the following alternative sampling scheme. A random 

sample of size N* is selected with equal probability and without 

replacement from the N units of P. A rotation design is then imposed 

on the N* units so that, in effect, the N* units become a new popu

lation P* according to our former terminology. At any occasion a 

there are n units from P* in the sample with n^ on each of the 

1st, 2nd, ..., r-th visits, n = rn^. 

Let XQ denote the composite estimator of the population mean 

XQ ^ of P* . Now XQ is an unbiased estimator of XQ ^ and this 

implies that x' is also an unbiased estimator of Xn . For, let E 
N* 

denote mathematical expectation over all possible samples of size N* 
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from P, and let E| ̂  denote expectation over all N*J possible 

rotation patterns within the N* selected units. Then 

E(*0> - E • *0' 

which proves the unbiasedness property. Further 

V(^) « E (V| (^)> + V (E| (^)) 
N* N* 

where the conditional variance operators are interpreted in the same 

manner as the conditional expectation operators. Now 

^(E|N,(^)) -  ^(X0 J N 4) -  (1/N* - 1/N)S0
2  .  

Further, E (V j^ (x^ ) ) is derived from V (x^ ) by replacing the 

subpopulation P* variances and covariances by the population P 

variances and covariances because they are obviously unbiased esti

mators of these parameters. The leading term of this second ex

pression will be (1/n - 1/N*)S*, so that the leading term of V(x^ ) 

will be 

(1/N* - 1/N)SQ + (1/n - 1/N*)SQ = (1/n - 1/N)sjj . 

Therefore the variance of the composite estimator of is not 

dependent upon the size of the subpopulation P* and the variance 

formulae previously derived are valid for the modified rotation design. 

Thus, in order to impose an infinite cycle rotation pattern such that any 

rotation group of n^ units has r consecutive visits in the sample 
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followed by m visits out of the sample, first select a random sample of 

size N* * (r+m)n^ from P and then proceed in the usual fashion to 

develop the rotation plan. 

Note that for a given population of size N and specified r and n 

the maximum possible value of m is m^ * r(N/n - 1) and m may 

take on any positive integral value < m^ . 

For convenience we shall continue to refer to the rotation plan as 

being superimposed on all N units of P. It will, however, be under

stood that all results so obtained are valid under the more general 

sampling procedure described above, 

E, Composite Estimation of Change 

1. The change estimator and its variance 

An obvious unbiased estimator of the change in level between the 

previous and current occasions is the difference between the composite 

estimators of the current and previous population means, viz., 

d ô  x  * 0  ~  * - 1  •  ( 3 , 2 6 )  

As mentioned in the Introduction, the sample data made available on the 

current occasion may be used to supply an estimator of X ^ which is 

more precise than x'j. Since the resulting estimate of change would 

then be in discrepance with the individual estimates of level, study will 

be restricted to an estimator of the form (3. 26). Now since 

-co 
x* = 2 Q ~ a W  ,  

0 a=0 a 
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where 

Wa " Q(xa,a-1 -xa-l,a)  + (1"Q)xa' 

it follows that 

-oo -oo . 
x' , = 2 Q"a W . * 2 Q~a W 
-1 a=0 Q"1 a* -1 

Now 

V(dy = V(xJj) + v(x^) - 2Cov(x^,x^), 

and 

_ -oo -oo 
Cov(x',x' , ) * Cov( 2 Q"a W , 2 Q"a_1 W ) 

U ~L Q*0 Q Q*-l a 

-oo . -oo , -00 . 
= Cov(W„, 2 Q"°" W ) + QCov( 2 Q" W , 2 Q" W ) 

0 a.-l 1 ax-1 a a»-l 

-oo _ 
» 2 Q ~ a ~ L  Cov(WQSWa) +QV(x; i) = 

a* -1 

Hence 

— — -oo , 
V(d^) = V(x^) + (l-2Q)V(x^) - 2 2 Q"^^Cov(Wg,Wj. (3.27) 

a* -1 

But 

_ -oo -oo 
V(x') = V( 2 Q"aW ) = V(W. + 2 Q~a W ) 

U a*0 a U a* -1 a 

2 — -oo 
* V(WQ) + Q V(x^) + 2 2 Q"a Cov(W ,W ), 

a* -1 a 



52 

so that 

_ _ -œ -, 
V(x^) = (V(xJj) -  V(WQ) -  2 S Cov(WQ ,  Wq) )/Q ,  

a* -1 

and soj substituting into (3. 27), 

V(d()) * [(Û-l)2V(xJj) + (2Q-1)V(W0) +2(Q-1) Z^Q~QÇov(Wq,Wjj/û2  

(3.28) 

It is now necessary to evaluate V(WQ) and COV(WQ , WQ) ;  V(XQ) 

has already been dealt with in previous sections. Let 

W0 = Qtx0,-1 ~ X-l,0)  + (1™Q)x0 = Xtsk * 

where 

(a) vn v = (l-Q)/n for n_ units on 1st visit of a cycle at 
Uj K ù  

t * 0 » 

(b) VQ ^ = (1 +n^ Q/n^)/n for n^ units on 2nd to r-th visits 

of a cycle at t = 0, 

(c) VQ K * 0 for (N-n) units not in the sample at t * 0, 

(d) v ^ k * - Q/n^ for n^ units on 1st to (r-l)-th visit of a 

cycle at t = -1 , 

(e) v j ^ = 0 for the remaining N-n, units at t = -1 . 

Thus 
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N N 
E(W0) = 2 E(v >* + 2 E(v >x « XQ - OX.,. 

k=l * '  k=l * * 

Using the fact that 

V(W0) - E(W2) - (E(W0))2 = £(^2^ Jv,. kXtgk)2 - <X„ - QX./ , 

some straightforward algebra will lead to 

V(W0) .  NE(v2
)k)S2 tNEtv^^iS^ 

- S2/N - Q2s2,/N + 2QS. ,/N. (3.29) 
0 - i U,-l 

With the aid of (a) to (e) above, (3.29) finally reduces to 

V(WQ) « (1/n- 1/N)S2+ Q2(l/ni  - l/n)S2+Q2(l/ni  - Î/NJS^ 

- 2Q(1/n - l/N)S^_i - 2Q2 (1/^ - l/n)S^_^ . (3.30) 

Next let 

Wa ^ Q ' ;a, a-l " xa-l, J + V 2 , . J. ut, k Xt, k' (a  < 0) '  '  ' t=a-l k*l 

where u . * v„ , , u , , = v , , for the same visit numbers on the 
a, k 0, k a-1, k -1, k 

respective occasions. Hence 

E(W ) = X - QX . . 
1 a a a-1 

Analogous to (3.30) it may be shown that 

Cov(W0,Wa) « (NE(v0ikuaik) - l/N)S0)a  + (NE(v0>kVljk) 
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+ Q/N>S0,a-l + (NE<v-l,kVl,k»-Q2/N)S-l,a-l + (^^-l.k-ck1 

+ Q/N)S_ l ja. (3.31) 

(3, 31) will be evaluated for an infinite cycle rotation design with 

m_> r0 Then 

NE(v0 k) * n2(l + n
2 Q/nj) ((r-t)n^ - tn^C^/n^n^ 

for a * -JÉ(r+m) -1, 0,1,2,..., 1 < t < r-1 , 

= 0 for a * -j2{r+m) - r - t, i- 0, 1, 2, ..., 0 < t < m-r , 

« n^lnj^ + n^ Q)(-nQ + t(n1 + n2 Q) )/n2 n2 

for a = -i(r+m) - m - t, 4= 0,1,2,..., 1 < t < r-1 , 

* (n^ + n2 Q2 )/nn^ for a = -i(r+m), 1*1, 2,... . 

^O.k'Vl.k1 

- - Q(n, +n Q)(n^ - tn^J/nn2 for a = -i(r+m) - t, 0,1,2,..., 

1 < t < r-1 , 

= 0 for a = -i(r+m) - r - t, i * 0, 1, 2,..., 0 < t < m-r , 

= - Qn2(-nQ + t^j^+n2 Q) )/nn2 for a = -!(r+m) - m - t , I * 0, 1, 2,..., 

1 < t < r-1 , 

= - Q(n^ +n2 Q)/nn^ for a = -l(r+m), JE* 1,2,3,... . 

^fr-i.kVk' 
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2 = - Q^nn^ - tn^n^ +n^ Q) )/nn1 for a*-£(r+m)-t where I = 0, 1, 2, ..., 

1 < t < r-i , 

= 0 for a * -£(r+m) - r -1, £ = 0,1,2,..,, 0 < t < m-r , 

= - Q(n1+n2Q)(t-l)n2/nn2 for a = -l(r+m) - m - t, 4= 0,1,2,..., 

1 < t < r-1 , 

= - Q(n^ +n2 Q)/nn^ for a * -l(r+m), £*1,2,3,... . 

"I'.i.kVu1 

k Q2 (n. - tn_)/n2 for a = -4(r+m) - t, I x 0, 1, 2, .. . , 1 < t < r-1 , 

x 0 for a = -£(r+m) - r -1, £ = 0,1,2,..., 0 < t < m-r , 

* Q2 (t-l)n2/n2 for a = -£(r+m) - m - t, £ * 0, 1, 2, ..., 1 < t < r-1 , 

= Q2/n^ for a = -£(r+m), £ = 1,2,3,... . 

Thus, making use of (3.31) and the above relationships, we have that 

-oo oo 
2 Q COV(WQ,W^) = 2 « + QS^^_/N + QS_^_/N 

a* -1 t— 1 

-Q2S . . ,/N)+ S Q^(r+m) 2 Q1" n (n. +n _Q)((r-t)n - tn Q) 
* - t~ i=0 t=l 2 12 12 

S0,-i(r+m)-t^n nl )+
ff0

Q ^ ° n2 (nl +n2 Q^~nQ 



56 

+ t<»l +"2 « >S0, -«(r+ml-m-A2 4 » + £ <nl + n2 ̂  > 

S0, -l(r+m) / ( lœl' 

CD , I r-1 

~ i?QQ^ r+m) t*l ° t+1  ̂  +n2Q)^nl - tn2 )S0, -i(r+m)-t-l^^l ̂  

oo . , r-1 
i(r+

m| Qm+t+1n2(-nQ+t(n1+n2ti))S r  

i=0 t=l 

- £ Qj(l 'hn,Q<"l +*2Q)S0, 

'1 'jfoQltr+m) t=l Qt+2(nl" ta2 ,S-l»-'(r+m)-t-l /nl 

H (t-ljn^ s_i^ -£(r+m)-m-t-l /nl 

i(r+m) Qt+l (n  n„t„ („ +„ Q))S_, i ( r+m,V (nni) 

i* 0 t*l 

- ,=nQ ' ( r+ml J,' Qm+t+1(-l+"2Ql(t-Un2 

x—0 t—1 

.  £ Q«r+m)+l (ni  + / f rBl, . (3.32) 

X— 1 

Therefore, by virtue of (3.28) and making use of (3.30) and (3.32), 
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V(d|j) = {(Q-l)2 V(x^) + (2Q-1) ((1/n - 1/N)S2 +Q2(l/ni  - 1/n)S 

+ Q2(l/n l-l/N)sf1 - 2Q(l/n-l/N)S 2Q2 (1/xij - 1/n) S _x) 

+ 2(Q-1) 2 Q i^ r+m^ 2 Q* 
£=0 t=l 

n2^nl+n2Q^^ r"^nl " tn2Q^S0, -A(r+m)-t 

/(n2n2) - Qfnj+^QKnj ' '»2 ) s0, ., ( l+m). t.i/(lf n> 

+ Q (ni " -<( r+m)-t-l'°l " Q 'nln" to2'nl +n2Q" 

S-l. -ifr+mt-t't"!"']- 2<°-» -, + f f i», -t-1 + »-!, -t 

-  Q2s . . .)/N + 2(Q-l) 2 Q i ( r+m) 2 Qm+t n_(n. +n Q) 
i=0 t=l L 2  1 2 

("nQ + t(n1
+n2Q))SQ^ _£^ r+mj_m_ t/(n n1 ) - n^ Q( -nQ + t(n^ + n^ Q) ) 

S0, -je(r+m)-m-t-l^nnl * + Q ^~1)n2S-l, -i(r+m)-m-t-1 /nl 

- Q(nx +n2Q)(t-l)n2 S_^ _j, ( r+m)_m_ t/Cnf *> 

+ 2(Q_1) ^2 [ (n, +n2 Q2 )S^ _,(,+^/(mV " ^ Q) 

S0,-£(r+mJ-l^^l^ + Q S-l, -je(r+m)-l /nl " Q^nl + n2 

^L,_£(R+M/(-L)]I /G2 . (3.33) 

If a stationary Markoff type covariance structure, as given by 

(3.14) and (3.15), is assumed so that V(x^ ) is given by (3. 16), then 
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after a considerable amount of algebraic manipulation (3,33) will 

reduce to 

Y(d|j ) = 2(1/n- l/N)(l-p)S2 + 2(Q-1)S2 [-(r-l)2p + (2r2-5r+3)Qp 

+ r (r -1 ) Qp2 + (2r2-r-3)Q2p - (3r2-4r)Q2p2 + (3r - 2r2)Q2 - rQ3 

+ (3r2 - 2r + 1) Q3 p + (-3r2 + 2r)Q3p2 + r(r-l) Q3 p3 + ( - r 2 + r ) Q4 p2 

+ r(r-l)Q^p3 + Q r  p r  * [ r(r-l)p - (r-l)p2 - r2Q - r(r-3)Qp 

- (r2-3r +3)Qp2 + r2Q2 + (r2-3r)Q2p + (r2 - 3r+3) Q2 p2 - r(r-l)Q3p 

+ (r-1 )Q3 p2 j + Qmpm+* (r-1)2 + (-2r2 + 5r-3)Q - r(r-l)Qp 

- 3 (r -1 ) Q2 + 3r (r-1) Q2 p + (r2-r -1)Q3 - r(r-3)Q3p - r2Q3p2 + rQ4 

- r(r+l) Q4p + r2 Q4p2 + Qm* r  pm+r £ (-r2 + r) + (r-1 ) p + (3r2 - 3r) Q 

+ ( -3r + 3) Qp + r2Q2 + ( -6r2 + 7r - 3)Q2 p + (2r2-r)Q2p2 - r2Q3 

+ ( -r2 + 2r + 1) Q3 p + (4r 2 - 5r) Q3 p2 - r(r-l) Q3 p3 + r (r-1) Q4 p 

-r(r-l)Q4p3] }/r2(r-l)2(l-Qp)2(l-Q2)(l - (Qp) r+m)n2. (3.34) 

2. The static population check 

As a check on (3.34) again consider the case XQ ^ = x ^ ^ 

= x 2 k = ** * '  k = 1, 2, ...,N, whence p = 1 . Then 

oo . _ 
d' = (1-Q) S Q r(x -x ), 

0 t=0 _t  " t_1 
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and so 

_ _ ? oo 00 t_ 
V-(d') « V(x') + V(x> ) - 2(1-Q) Cov( 2 Q x , 2 Q x , ) .  

u u t=0 t=0 

Since V(xq) = V(x' ^) when p = 1» it follows that 

- ? _ oo 
V(dy) « 2(l-Q)V(x^) - 2(1-Q) Cov(x0, 2 Q x_ t l). (3.35) 

t— 0 

Now it may be shown that 

COV(xq ,X_J + QX_2 + Q2 x_2 + ... ) 

= 2 Q i( r+m> 2 QS-1(n (r-s)/nS - 1/N)S2 - 2 Q^ r+m) 2 Q r~1+SS2/N 
£=0 s*l £=0 s=0 

+ 2 Q*( r+m) s Qm"1+S(sn /n2 - 1/N)S2 , 
1=0 s=l 

= -S 2/N(l-Q) + s2  [  (1-Q r _ 1  )/n(l-Q) + n^rû1"1 - (r-1) Q r  - l)/n2(l-Q)2  

+ n2Qm"1(Q-(r+l)Q r+1+rQ r+2)/n2(l-Q)2] /(l-Q r+m). (3.36) 

Substituting (3.21) and (3.36) into (3.35) and simplifying gives 

V(d^) * 2n2S2(l-Q)2 (1 -Q r  -Qm + Qm+r)/n2(l-Q2)(l-Q r+m) . (3.37) 

Substituting p = 1 into (3.34) also yields (3.37) thereby 

providing a check. 

3. Further comments 

It might be felt that a somewhat devious route was taken in deriving 
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(3. 33) and (3, 34) and that a direct approach in the spirit of B and C 

might lead more directly to the desired results. It may be verified that 

three sets of weights wq ^ appropriate to a * 0, a = -1 and a < -1 

are then necessary. The additional set of weights introduces a 

forbidding amount of algebra into the subsequent derivation. Hence the 

method employed is to be preferred. 

There may be reason to estimate the change in level between 

occasions that are not consecutive. For example, in a monthly panel 

survey estimates of quarterly and yearly change may as well be of 

some special interest. A composite estimator of XQ - X , a< -1, 

is 

-a = "Ô -  ̂ a '  

°o 
= S Q (W - W ) 

a=0 a a"a 

where Wq is given by (3.3). Full cognizance of the rotation plan is 

essential since the number of sample units (if any) in common with 

occasions 0 and -a is dependent upon m and r . The variance 

function V(d^ ^) will therefore vary with the choice of -a. It is a 

straightforward but extremely tedious job to develop V (d^ ^) for a 

given value of -a and no attempt at any explicit evaluation will be made 

here. 

A composite estimate of the average level, (XQ + X j)/2, on the 

current and previous occasion is (XQ + x' ^)/2 = SQ with variance 

V(Sq) = (V (x^) + V(x' ^) + 2 Cov(xq , x' ^) )/4. The final form of this 
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variance may therefore be obtained by replacing the minus covariance 

by a plus covariance in the derivation of V(d^) and dividing by four. 

F. Covariance Between Current Occasion and Change Estimators 

The problem of choosing an optimum design for the joint estimation 

of XQ and dg will be considered later. The solution offered will 

depend upon the covariance between the two estimators XQ and d^ as 

well as their individual variances. Hence COV(XQ * d^) will now be 

evaluated. 

C o v ( X Q ,  d ^ )  =  C o v ( x ^ , x ^  -  x ^ )  =  V { x ' Q )  -  C o v t x ^ x ^ )  .  

Further, 

V(djj) = V(XQ) + V(<1) - 2Cov(x^,x^) , 

so that 

C° V( XQ,xj_^) =  i V ( x ' Q )  +  V(x^) - Y(d^) )/2 . 

Since it was shown earlier that 

_ _ -co -, 
V(x^) « (V(XQ) -  V(WQ) - 2 2 CfQ Cov(W0,Wa))/Q , 

a= -1 

it follows that 

_ _ _ -oo 
CovU^x^} =  [  V ( x ^ )  + (V(x^) - V(W Q )  -  2  2  Q™ A  Cov(W 0 ,  W Q )  ) /CT 

a= -1 

-  V < d J >  ]  -
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and hence that 

? _ -co 
Cov(x|j, dg ) = ( (Q - 1) V(x|j) + V (W Q )  + 2 S Q"a COV(W Q ,W Q )  

a= -1 

+ Q2 V(d| )))/2Q2 . 

With the help of (3. 28) this becomes 

COV(XQ, d^) « ( (Q-l)2 V(x^) - V(W0) + Q2 V(d^) )/2 Q(Q-1), (3.38) 

and expressions for V(XQ), V(W q) and V(d^) are already available. 

Under the covariance structure specified by (3. 14) and (3.15), 

substitution of (3. 16), (3.30) and (3.33) into (3.38) gives 

Cov(XQ, d|j) = (1/n- 1/N) (l-p)S2 + S2 [ (r-1)2 p + (-r(r-l)p2 

- (3r-4)(r-l) p) Q + (r (4r-5) p2 - 2(2r-3) p + r(2r-3) ) Q2 + ( -r(r-l) p3 

+ 2rp2 + (-r2+r-4)p - 2r (r-2) ) Q3 + (r(-2r+l)p2 + (3r2 - 2r+l) p-r) Q4 

+ (r (r-1) p3 - r(r-l) p2 )Q^ +Q rp r  * [ (r-l)p2 - r(r-l)p + ( (r-2)2 p2 

+ 2r(r-2) p + r2 )Q + (2 ( -r2 +3r - 3) p2 - 2r (r-3) p - 2r2 ) Q2 

+ ( (r-2)2 p2 + 2r(r-2)p + r2 ) Q3 + ( (r-1 ) p2 - r(r-1 ) p ) Q4 ] 

+ Qm pm+* [ - (r-1)2 + (r (r-l)p + (3r-4)(r-l) )Q + ( -4r(r-1) p 

- 2(r-3)(r-l) )Q2 + (r2 p2 + 2r(2r - 3) p - r2 - 2r + 4)Q3 + ^ - 2r2 p2 

+ 4rp + r2 - 2r - 1)Q4 + (r2 p2 - rXr+l)p + r) ] + Qm+r pm+r [ r{r-l) 
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- (r -1 ) p + 4( (r -1 ) p - r(r-l) ) Q + (r ( -2r+l) p2 + 2(3r2-5r+3)p 

+ r(2r-3) ) Q^ + (r (r-1)p3 - 2r (r-2) p2 + (-5r2 + 5r-4)p + 2r^ ) Q3 

+ (r (4r-5) p" + (-2r"+3r + l)p-r2) Q4 + (-r(r-l)p3 +r(r-l)p)Q j  

/ r2(r-l)2n2 (1-Q2 )(1-Qp)2 (1 - (Qp) r+m) . (3.39) 

As a check on (3.39) take the case where XQ ^ = X_^ ^ = x ^ ^ =.. 

so that p = 1 . Then 

N 00 1 
Cov(xq , dp) = (1-Q) V(xq) - (1-Q) Cov(x0, 2 Q Z ~ x_ t), 

t= 1 

which leads to 

COV(XQ , ) = (Q-l)2 S2 (l-Q r-Qm + Qm+r)/r2n2(l-Q2)(l-Q r+m). 

(3.40) 

Putting p = 1 in (3.39) and simplifying also yields (3.40). 

G. Numerical Determination of Optimum Values of Design and 
Estimator Parameters 

Some consideration should be given to the choice of the two design 

parameters, r and m, and the estimator parameter, Q, if full benefit 

is to be derived from the partial replacement sample design. The 

sample size n on each occasion is assumed to be constrained by 

budget considerations. The correlation structure over time and the 

population variances are, of course, beyond the control of the statis

tician. If the cost of enumerating all units is the same regardless of 
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the visit or cycle number, then the minimum variance of the statistic 

under consideration will be the criterion for selecting the appropriate 

values for r, m and Q. A different criterion will be introduced when 

the joint estimation of X^ and X^ - X ^ is considered. 

By an optimum value of a design or estimator parameter is meant 

that value of the parameter which minimizes the variance of the 

statistic under consideration with all other parameter values held 

fixed. For a given covariance structure there is obviously some 

optimum combination of r, m, and Q which provides an overall 

minimum variance. The usual differential calculus approach for the 

determination of minima was not employed because of the extreme 

complexity of the differentials of the functions involved. Rather, a 

numerical investigation of the variance functions V(XQ) and V(d^) and 

the covariance function COV(XQ , d^) was carried out for the purpose of 

determining approximately the individual and overall optimum 

parameter values. The assistance of a high-speed electronic computer 

brought this task within the realm of feasibility. 

1. Infinite population results 

In order to obtain specific numerical results the covariance con

ditions (3. 14) and (3. 15) were imposed upon the populations so that 

V(XQ) , V(d|j) and Cov(x^, d^) are given by (3.16), (3.34) and (3.39) 

respectively in an infinite cycle design. These functions are dependent 

upon S2, n and N as well as p, r, m and Q. By assuming that N 

is large so that 1/N may be ignored, and limiting the study to the 

efficiency gain of the composite estimators XQ or d^ relative to the 
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arithmetic mean XQ or difference in arithmetic means XQ - x ^ 

respectively, the three factors SQ, n and N are eliminated from the 

calculations. 

In the computer tabulations the number of consecutive occasions m 

for which a rotation group is not in the sample was taken to be an 

integral multiple I of the number of consecutive occasions r that a 

rotation group is in the sample, m = ir, for convenience. The values 

2, 3, 4, 6 and 8 were assigned to r, and the values 1, 2, 3, 4, 6, 8 

and 10 to £, The tabulations revealed that the larger £ values were 

usually unnecessary. The coefficient of correlation p between 

observations on the same unit on consecutive occasions was assigned 

the values 0.5, 0.6, 0.7, 0.8 and 0.9. The estimator coefficient Q 

ranged from 0.1 to 0.9 at intervals of 0.1. The relative efficiency 

criterion was calculated for all possible combinations of r, i, p and 

Q and a visual inspection of the computer output was thus sufficient to 

determine the approximate optimum values of these parameters. 

In Table 1 may be found the per cent increase in efficiency in using 

XQ rather than XQ as an estimator of XQ when Q is close to its 

optimum value: 

V(XQ) - V(x') 
Efficiency gain = — (100)% (3.41) 

vu;,) 

where V(XQ) = Sy/n with N infinite and V(XQ) is given by (3.16). 
•S 
Q is the approximate optimum Q value as determined from the 

computer tabulations for specified p, r and i. Because the tabulation 
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interval for Q was 0.1 this approximate optimum should be at least 

within 0. 05 of the true optimum Q. The efficiency gains at Q values 

below and above the approximate optima have also been recorded. 

These additional entries serve to indicate the degree of robustness of 

the optimum Q, i.e., the extent to which a deviation from the optimum 

Q decreases the efficiency gain. They also permit the evaluation of an 

improved approximation to the true optimum Q by means of, for 

instance, quadratic interpolation. For a given p the tabulations have 

been terminated at the point where any increase in I would not alter 

the figures recorded to two decimal places. To illustrate the use of 

Table 1, for p = 0. 8, r = 3, I = 2 the approximate optimum Q is 

Q = 0. 5 where the efficiency gain is 22.30%. At Q = 0.4 the gain is 

20. 46% and at Q * 0. 6 it is 18. 61 % . Thus the true optimum would 

appear to be somewhere between 0. 4 and 0. 5. 

Several interesting conclusions may be drawn from Table 1. 

(a) The optimum number of visits by a rotation group is r - 2 for 

all p . The efficiency gain of XQ over XQ declines steadily as 

r increases beyond two. 

(b) As the correlation coefficient p increases the efficiency gain of 

XQ over XQ becomes more and more pronounced. At p = 0.5, 
«•» 

I = 1, r = 2, Q = 0. 2 the efficiency gain is 5.16% whereas at 
A 

p = 0. 9, I - 1, r = 2, Q = 0. 5, the gain is 3 8. 78% . 

(c) The optimum Q value is greater for larger values of p .  

(d) For fixed p, r and Q the efficiency gain of XQ over XQ 
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increases as I increases. This is in agreement with the 

optimum r = 2 already observed in (a). 

(e) As I increases the efficiency gain of XQ, and therefore V(x^) 

as well, rapidly approaches a limiting value. When p < 0. 9 

there is little error introduced in taking the one cycle variance 

formula as an approximation to the infinite cycle variance 

formula when i > 3 . This is due to the fact that the two ad

ditional terms introduced into V(x^) by the finite recurrence 

time for a rotation group are then sufficiently damped by the 

(Qp)m and (Qp)m* r  factors so as to be negligible in comparison 

with the one cycle terms. 

(f) The efficiency of x^ relative to xQ decreases only slightly in the 

neighborhood of the optimum Q; thus Q is robust. 

There are two meaningful efficiency comparisons for the composite 

change estimator d^ = x^ - x'  ̂  .  If XQ and x ^ are the arithmetic 

means on the current and previous occasions as observed in the rotation 

design, then there are n^ = (r-1 )n^ common units entering into the 

calculation of these means and hence 

2S« (1 - (r-l)p /r ) 
v 'xo - x-l> = — ^ » I3-42> 

again ignoring the finite population correction. The efficiency gain is 

calculated as in (3.41). The efficiency gain using d^ may also be 

computed relative to the variance of the difference in sample means 

resulting from two independent samples, whence 
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V(xQ - x_x) = 2S^/rn2 . (3.43) 

Table 2 is similar in structure to Table 1 except that the efficiency 

gain relative to a change estimate from independent samples is recorded 

in brackets to the right of the gain relative to the simple change estimate 
* 

in the rotation design. In cases where Q is 0.9 the efficiency gains 

appropriate to Q = 0. 7 and Q = 0. 8 are given. Since efficiency gains 

for Q values greater than 0. 9 were not computed, it is possible that 

the true optimum Q is greater than 0.95 in such situations. 

The following features of Table 2 are noteworthy. 

(a) Larger gains in efficiency are scored through the use of composite 

estimation of change than by composite estimation of level for 

given p, r and Jt. For larger values of p the gains are indeed 

appreciable; for example with p = 0. 9» r * 2, £ - 1, there is a 

208.74% gain in efficiency using d^ over x^ - x ^ in the 

rotation design. 

(b) The gains relative to the difference of independent sample means 

are even greater since the latter mode of estimation does not 

take advantage of the positive correlation among observations on 

the same unit over time. 

(c) The optimum value of r for any p and I is again two (as for 

composite estimation of level) when comparison with the difference 

of simple matched sample means is made. The efficiency 

relative to the difference of independent sample means, however, 

steadily increases as r increases. This is because in the first 



69 

case although both V(d^) and V(XQ-X_^) decrease with 

increasing r, the second variance diminishes at a faster rate 

than the first so that the overall efficiency ratio decreases. In 

the second case V(x^ - x is independent of r and hence the 

efficiency ratio increases as r increases. 

(d) As opposed to Table 1, the efficiency gain of d^ relative to the 

two alternative methods of change estimation mentioned decreases 

as I increases. For moderately large i values V(dg) becomes 

insensitive to increases in £. 

(e) The optimum Q values for change estimation are in all cases 

greater than the optimum Q values for estimating level for the 

same values of p and r. 

(f) The efficiency gains are affected but little by small deviations 

from the optimum Q values. 

(g) Still another estimator of the change between the previous and 

current occasions is given by the difference between the arithme

tic means of the matched units only on these occasions, 

xA , - x , „ . This will be a more efficient estimator than 
U,-1 -1, u 

x0 - x i provided that 

2SQ (1 - (r-l)p /r) ^ 2SQ (1-p) 

r n2 (r-1)1*2 '  

or p > r/(2r-l) . 

Thus if r = 2, p must be greater than 2/3, if r = 3, p must be 
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greater than 3/5, and so on. But in practical situations 

XQ I - x I Q would not likely be used as an estimator of 

XQ - X ^ since it is in general incompatible with the individual 

estimates given by XQ and x ^ .  For this reason no comparison 

of the relative efficiencies of xq " x '  j with XQ ^ - x ^ Q will 

be made. 

Although the optimum values of r for the composite estimation of 

XQ and XQ - X ^ agree, it is apparent that the optimum Q values for 

these estimators differ. It is therefore necessary to make some 

compromise between the two requirements in order to arrive at a single 

Q. Although the weight Q is permitted to vary between characters, it 

is apparent that the Q values used in the composite estimator of XQ 

and XQ - X ^ must necessarily agree if the estimate of change is to be 

given by the difference of the composite estimates of level. One possible 

criterion is the selection of that value of Q which minimizes the 

generalized variance of the two estimators, i.e., of the determinant of 

the covariance matrix of XQ and d^, 

V ( x ' Q )  Cov( XQ »  d^) 
A0 = 

COV(xQ J d^) V(d^) 

= V(x^)V(d^) - (COV(XQ , D^) )2 . 

Since V(xq) and V(dy) decrease with increasing n, an efficiency 

criterion involving a ratio of generalized variances was defined, 
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A = HT)  (ioo)% ,  (3.44) 

where 

A = 

C o v ( x 0 , x 0  "  x - l }  

C o v ( xo'xo " X-1 }  

v(x0 " x-l} 

Here XQ - x ^ is the difference in sample means in the rotation design, 

and hence 

S„(l  -  i^p) 

A = 

rn. 

SQ (1 - ^P) 
(r-1) 

r 
rn. 

rn. 

2S2(1 -  ̂  p) 

rn. 

s h i - k ^ P 2 )  

2 2 
r  n2 

The approximate optimum compromise choice of Q, Q', is then 

that value of Q which maximized X for a given p, r and £. Table 3 

is similar in format to Tables 1 and 2 and presents the approximate 
A 

optimum Q' with the corresponding optimum X1 value. The X 

criterion may be essentially regarded as a relative efficiency index as 

well. It will be noted from Table 3 that: 

(a) In agreement with Tables 1 and 2 the optimum choice of r is 

always two. 



72 

(b) The optimum Q' lies between the optimum choices of Q in 

Tables 1 and 2 for specified p, r and I . 

(c) The index X increases with increasing I for fixed p and r , 

and with increasing p for fixed I and r . 

(d) The index X is robust with respect to small deviations from the 

optimum Q. 

There might perhaps be some question as to the desirability of the 

generalized variance criterion for selecting a compromise Q value. 

One might alternately attempt to proceed along the lines of Hartley 

(1961) and prescribe gauges BQ and such that 

V(^>1B0, V(dS)<C0. 

Then, subject to these constraints, choose the optimum parameter 

values which minimize the cost of conducting the survey. This is a 

difficult problem in mathematical programming and no attempt was 

made at a solution. 

It should again be emphasized that the conclusions derived from 

Tables 1, 2 and 3 are strictly valid only under the assumption of a 

Markoff type correlogram with constant population variances and 

covariances. 
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Table 1. Efficiency gains in per cent of x^ over x^ near the 
optimum Q values 

q Efficiency q Efficiency q Efficiency 
gain gain gain 

1 2 0. 1 4.03 0. 2 5. 16 0.3 1. 88 
3 0. 1 2. 80 0. 2 4. 23 0.3 3.58 
4 0.1 2.12 0. 2 3.31 0.3 3. 17 
6 0. 2 2. 26 0.3 2.33 0.4 1.27 
8 0.2 1.71 0.3 1.81 0.4 1.11 

2 2 0. 1 4.05 0. 2 5.26 0.3 2.18 

1 2 0, 1 5.36 0. 2 8.50 0.3 7.76 
3 0. 2 6. 28 0.3 7. 25 0.4 5.49 
4 0.2 4.77 0.3 5.78 0.4 5.10 
6 0. 2 3. 18 0.3 3.96 0.4 3.79 
8 0. 2 2.39 0.3 2.99 0.4 2. 94 

2 2 0.1 5.39 0. 2 8.69 0.3 8.34 
3 0. 2 6.29 0.3 7.32 0.4 5.70 
4 0.2 4.77 0.3 5.79 0.4 5.14 

3 2 0. 1 5.39 0. 2 8.70 0.3 8.36 
3 0. 2 6.29 0.3 7.33 0.4 5.70 

1 2 0. 2 12. 03 0.3 14. 23 0.4 11.38 
3 0.3 11.31 0.4 11.97 0.5 8.79 
4 0.3 8. 66 0.4 9.78 0.5 8.54 
6 0.3 5.75 0.4 6.70 0.5 6.43 
8 0.3 4.28 0.4 5.03 0.5 4. 96 

2 2 0. 2 12.35 0.3 15.27 0.4 13.46 
3 0.3 11.46 0.4 12. 43 0.5 9.71 
4 0.3 8.68 0.4 9. 88 0.5 8. 80 

3 2 0.2 12.36 0.3 15.32 0.4 13.62 
3 0.3 11.46 0.4 12. 44 0.5 9.75 

1 2 0.3 21.37 0.4 22. 85 0.5 18.02 
3 0.4 19.53 0.5 20. 20 0.6 15.21 
4 0.4 15.25 0.5 17. 12 0.6 15.37 
6 0.5 11.86 0.6 11.99 0.7 7.73 
8 0.5 8. 83 0.6 9. 23 0.7 6.75 

2 2 0.3 23.13 0.4 26. 67 0.5 23.85 
3 0.4 20.46 0.5 22.30 0.6 18.61 
4 0.4 15.47 0.5 17.78 0.6 16.81 
6 0.5 11.93 0.6 12. 22 0.7 8. 26 
8 0.5 8. 84 0.6 9. 27 0.7 6.88 
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Table 1 (Continued) 

1  r Q Efficiency 
gain 

A 
Q Efficiency 

gain 
Q Efficient 

gain 

3 2 0.3 23.23 0.4 27.07 0.5 24. 82 
3 0.4 20.49 0.5 22. 44 0.6 18.99 
4 0.4 15.47 0.5 17.80 0.6 16.89 

4 2 0.3 23.24 0.4 27. 11 0.5 24. 97 
3 0.4 20. 49 0.5 22. 45 0.6 19. 04 

1 2 0. 4 36. 42 0.5 38.78 0.6 33.75 
3 0.5 34.55 0.6 36. 65 0.7 30.62 
4 0.5 27.92 0.6 32. 40 0.7 31.22 
6 0.6 23.43 0.7 26.02 0. 8 19.74 
8 0.6 17.49 0.7 20.62 0. 8 18.10 

2 2 0.4 43. 18 0.5 50.64 0.6 49.38 
3 0.5 39. 07 0.6 45.28 0.7 42. 46 
4 0.6 36.39 0.7 38.59 0. 8 25.46 
6 0.6 24. 22 0.7 28.35 0. 8 23.99 
8 0. 6 17.65 0.7 21.33 0. 8 20.05 

3 2 0.5 53.19 0.6 54. 22 0.7 39.64 
3 0.5 39. 49 0.6 46.71 0.7 45.57 
4 0.6 36.73 0.7 39.79 0. 8 27.64 
6 0.6 24. 24 0.7 28.50 0. 8 24.60 
8 0.6 17.65 0.7 21.35 0. 8 20.19 

4 2 0.5 53.71 0.6 55.65 0.7 41.99 
3 0.5 39.53 0.6 46.93 0.7 46.36 
4 0.6 36.76 0.7 39.99 0. 8 28. 23 
6 0. 6 24. 24 0.7 28.51 0. 8 24.68 

6 2 0.5 53. 84 0.6 56. 20 0.7 43.30 
3 0.5 39.53 0.6 46.97 0.7 46. 60 
4 0.6 36.77 0.7 40.02 0. 8 28. 43 

8 2 0.5 53.85 0.6 56.25 0.7 43.50 
3 0.5 39.53 0.6 46.98 0.7 46. 62 



Table 2. Efficiency gains in per cent of - x1 ^ over the difference of overall means and over 

independent samples (values in brackets) in estimating change near the optimum Q 

values 

p I  r Q Efficiency 
gain 

•S 
Q Efficiency 

gain 
Q Efficiency 

gain 

0.5 1 2 0. 2 10.54 (47.39) 0.3 12.76 (50.35) 0.4 12.39 (49. 86) 
3 0.3 10. 51 (65.77) 0.4 11. 18 (66.77) 0.5 10. 42 (65.63) 
4 0.3 8.68 (73. 88) 0.4 9.38 (75.00) 0.5 9. 06 (74. 50) 
6 0.3 6. 33 (82. 29) 0.4 6.91 (83.28) 0.5 6. 83 (83.13) 
8 0.3 4. 96 (86. 59) 0.4 5.43 (87.43) 0.5 5.41 (87.39) 

2 2 0. 2 10.30 (47.06) 0.3 12.37 (49.82) 0.4 11. 96 (49. 28) 
3 0.3 10. 47 (65.70) 0.4 11. 11 (66. 67 ) 0.5 10. 35 (65.52) 
4 0.3 8.67 (73. 88) 0.4 9.36 (74. 98) 0.5 9. 05 (74. 48) 

3 2 0. 2 10. 29 (47.06) 0.3 12.36 (49.81) 0.4 11. 94 (49. 25) 

0.6 1 2 0.3 20. 94 (7 2.77) 0.4 23.43 (76.33) 0.5 22. 65 (75.22) 
3 0.4 19. 18 (98.64) 0.5 20. 23 (100.39) 0.6 19. 46 (99.09) 
4 0.4 15.75 (110.45) 0.5 16.84 (112.44) 0.6 16.71 (112. 20) 
6 0.5 12.36 (124.71) 0.6 12.45 (124. 90) 0.7 11.76 (123.52) 
8 0.5 9.70 (130.95) 0.6 9.82 (131. 20) 0.7 9.37 (130. 25) 

2 2 0.3 20. 10 (71.57) 0.4 22.44 (74.91) 0.5 21. 82 (74. 03) 
3 0.4 18.99 (98.31) 0.5 20. 00 (100.01) 0.6 19. 28 (98.81) 
4 0.4 15.71 (110.38) 0.5 16.79 (112.34) 0.6 16. 66 (112. 10) 

3 2 0.3 20. 07 (71.53) 0.4 22.38 (74. 83) 0.5 21.75 (73. 92) 

0.7 1 2 0.4 39. 49 (114.60) 0.5 42.83 (119.74) 0.6 41.68 (117.96) 
3 0.5 34. 96 (153.04) 0.6 36. 87 (156.64) 0.7 36.02 (155. 03) 
4 0.6 30.53 (174. 80) 0.7 30.74 (175.25) 0. 8 28. 84 (171. 25) 
6 0.6 22. 27 (193.46) 0.7 22.78 (194.67) 0. 8 22. 04 (192. 89) 
8 0.6 17.47 (203. 14) 0.7 17.92 (204.30) 0.8 17.50 (203.23) 



Table 2 (Continued) 

Q Efficiency Q 
gain 

2 2 0.4 37.31 (111.25) 0. 5 
3 0.5 34.30 (151. 80) 0.6 
4 0.6 30.31 (174. 34) 0.7 
6 0. 6 22. 25 (193. 39) 0.7 
8 0. 6 17.46 (203.13) 0.7 

3 2 0. 4 37. 14 (110. 99) 0.5 
3 0. 5 34. 27 (151.75) 0. 6 
4 0. 6 30. 30 (174. 33) 0.7 

4 2 0. 4 37. 13 (110. 97) 0.5 

1 2 0.5 77. 42 (195.70) 0. 6 
3 0. 6 68. 10 (260. 22) 0.7 
4 0.7 59.63 (299. 08) 0. 8 
6 0.7 43.30 (329. 90) 0. 8 
8 0. 7 33. 89 (346.30) 0. 8 

2 2 0.6 79.64 (199.40) 0.7 
3 0.6 66. 12 (255.97) 0.7 
4 0.7 58. 92 (297.30) 0. 8 
6 0.7 43. 12 (329. 35) 0. 8 
8 0.7 33. 84 (346. 15) 0. 8 

3 2 0.6 78. 81 (198. 02) 0.7 
3 0.7 70.63 (265. 64) 0. 8 
4 0.7 58. 85 (297. 12) 0. 8 

4 2 0. 6 78.63 (197.71) 0.7 
3 0.7 70. 59 (265.56) 0. 8 

6 2 0. 6 78. 57 (197.62) 0.7 
3 0.7 70. 58 (265. 54) 0. 8 

8 2 0. 6 78. 57 (197.62) 0.7 

Efficiency 
gain 

Q Efficiency 
gain 

40. 81 (116. 64) 0. 6 40. 36 (115.93) 
36. 29 (155. 54) 0. 7 35. 74 (154.50) 
30. 61 (174. 96) 0. 8 28. 89 (171.34) 
22. 75 (194. 61) 0. 8 22. 05 (192.91) 
17. 91 (204. 29) 0. 8 17. 50 (203.23) 
40. 57 (116. 27) 0. 6 40. 13 (115.59) 
36. 24 (155. 46) 0. 7 35. 70 (154. 44) 
30. 60 (174. 95) 0. 8 28. 89 (171.35) 
40. 54 (116. 22) 0. 6 40. 09 (115.53) 

83. 52 (205. 88) 0. 7 82. 37 (203.95) 
72. 17 (268. 94) 0. 8 71. 10 (266. 64) 
60. 49 (301. 22) 0. 9 57. 15 (292.87) 
44. 79 (334.36) 0. 9 43. 51 (330.53) 
35. 19 (350. 64) 0. 9 34. 60 (348.67) 
80. 43 (200. 71) 0. 8 74. 61 (191.01) 
70. 85 (266. 12) 0. 8 70. 80 (265.99) 
60. 28 (300. 69) 0.  9 57. 40 (293.49) 
44. 70 (334. H) 0. 9 43. 63 (330. 90) 
35. 16 (350. 55) 0. 9 34. 66 (348. 85) 
79. 88 (199. 80) 0. 8 74. 49 (190. 82) 
70. 72 (265. 84) 0. 9 65. 54 (254.73) 
60. 24 (300. 61) 0. 9 57. 46 (293.65) 
79. 72 (199. 53) 0. 8 74. 45 (190.75) 
70. 71 (265. 80) 0. 9 65. 58 (254.81) 
79. 65 (199. 41) 0. 8 74. 42 (190.71) 
70. 70 (265. 78) 0. 9 65. 59 (254. 85) 
79. 64 (199. 40) 0. 8 74. 42 (190.70) 



Table 2 (Continued) 

R Q Efficiency Q Efficiency Q Efficiency 
P r  gain gain gain 

1 2 0. 7 205. 05 (454. 63) 0. 8 208.74 (461.35) 0.9 196. 80 (439.63) 
3 0. 7 166. 55 (566.36) 0. 8 180.66 (601. 66) 0.9 180. 10 (600. 25) 
4 0. 8 149. 28 (667.00) 0. 9 152.65 (677.38) 0.7 134. 44 (621. 36) 
6 0. 8 108. 12 (732.49) 0. 9 113.13 (752.53) 0.7 96. 43 (685.71) 
8 0. 8 84. 37 (767.61) 0. 9 89.01 (789.45) 0.7 75. 63 (726.50) 

2 2 0. 7 195. 35 (437.00) 0. 8 205.05 (454. 63) 0.9 196. 65 (439.37) 
3 0. 8 177. 23 (593. 07) 0. 9 179. 93 (599. 83) 0.7 159. 47 (548.67) 
4 0. 8 146. 70 (659.07) 0. 9 152.50 (676.91) 0.7 130. 12 (608. 05) 
6 0. 8 106. 89 (727. 55) 0. 9 113.02 (752. 10) 0.7 95. 01 (680. 03) 
8 0. 8 83. 82 (765. 02) 0. 9 88. 94 (789. 12) 0.7 75. 18 (724.39) 

3 2 0. 7 192. 17 (431. 21) 0. 8 203.56 (451.93) 0.9 196. 59 (439.25) 
3 0. 8 176. 12 (590.30) 0. 9 179. 86 (599. 66) 0.7 157. 86 (544. 64) 
4 0. 8 146. 06 (657. 11) 0. 9 152.44 (676.74) 0.7 129. 47 (606. 05) 
6 0. 8 106. 72 (726. 88) 0. 9 113.00 (751. 99) 0.7 94. 92 (679.68) 
8 0. 8 83. 78 (764. 84) 0. 9 88. 92 (789.06) 0.7 75. 17 (724.34) 

4 2 0. 7 190. 99 (429.07) 0. 8 202.88 (450.69) 0.9 196. 55 (439. 18) 
3 0. 8 175. 73 (589.32) 0. 9 179. 83 (599.58) 0.7 157. 46 (543.66) 
4 0. 8 145. 89 (656.60) 0. 9 152.42 (676.67) 0.7 129. 36 (605.74) 
6 0. 8 106. 70 (726.79) 0. 9 112.99 (751. 96) 0.7 94. 91 (679.65) 

6 2 0. 7 190. 35 (427.92) 0. 8 202.37 (449.77) 0.9 196. 52 (439. 12) 
3 0. 8 175. 53 (588. 83) 0. 9 179. 81 (599.52) 0.7 157. 34 (543.35) 

8 2 0. 7 190. 26 (427.74) 0. 8 202.24 (449.54) 0.9 196. 50 (439. 10) 
3 0. 8 175. 50 (588.76) 0. 9 179.80 (599.50) 0.7 157. 33 (543.33) 

10 2 0. 7 190. 24 (427.71) 0. 8 202.21 (449.47) 0.9 196. 50 (439.09) 
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Table 3. Values of the efficiency criterion X in per cent near the 
optimum û values 

p i r Q  X  Q '  X '  Q  X  

1 2 0. 1 109.10 0. 2 112.94 0.3 108.60 
3 0. 2 110.86 0.3 110.99 0.4 105.73 
4 0. 2 108.78 0.3 109.60 0.4 106. 86 
6 0. 2 106.25 0.3 107.15 0.4 105. 96 
8 0. 2 104.84 0.3 105.62 0.4 104. 92 

2 2 0. 1 109.09 0. 2 113.01 0.3 108. 90 
3 0.2 110.86 0.3 111.02 0.4 105.82 
4 0. 2 108.78 0.3 109.60 0.4 106.87 

1 2 0.2 121.43 0.3 123. 10 0.4 114.52 
3 0. 2 116.64 0.3 120.81 0.4 119. 83 
4 0.3 117.03 0.4 117.55 0.5 113.19 
6 0.3 112.20 0.4 113.12 0.5 111.25 
8 0.3 109.46 0.4 110.31 0.5 109. 23 

2 2 0. 2 121.49 0.3 123.60 0.4 115.66 
3 0. 2 116.63 0.3 120.85 0.4 120.02 
4 0.3 117.04 0. 4 117.58 0.5 113.29 

3 2 0. 2 121.49 0.3 123.61 0.4 115.73 

1 2 0.2 131.64 0.3 141.72 0.4 141.63 
3 0.3 133.53 0.4 139.09 0.5 137. 14 
4 0.4 132.19 0.5 133.03 0.6 126.18 
6 0.4 123.04 0.5 124.62 0.6 121. 93 
8 0.4 117.84 0. 5 119.26 0.6 117. 82 

2 2 0.3 142.41 0. 4 143.76 0.5 131.50 
3 0.3 133.55 0. 4 139.43 0.5 138. 15 
4 0.4 132.24 0. 5 133.28 0.6 126.75 
6 0.4 123.04 0. 5 124.63 0.6 122. 00 

3 2 0.3 142.44 0.4 143.94 0.5 131. 93 
3 0.3 133.55 0.4 139.44 0.5 138. 19 
4 0.4 132.24 0. 5 133.29 0.6 126.77 

4 2 0.3 142.44 0.4 143.95 0.5 131.98 

1 2 0.4 182.68 0. 5 183.12 0.6 163.75 
3 0.4 167. 85 0. 5 178.62 0.6 176.75 
4 0.5 164. 94 0. 6 168.24 0.7 156.90 
6 0.5 146.21 0. 6 150.65 0.7 147.08 
8 0.5 135.62 0.6 139.33 0.7 137.99 

2 2 0.4 186.15 0. 5 190.48 0.6 172.73 
3 0.5 180.70 0.6 181.26 0.7 160.79 
4 0.5 165.45 0.6 169. 95 0.7 159.75 
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Table 3 (Continued) 

Q Q' X' Q 

2 6 0.5 146.25 0.6 150.88 0.7 147.75 
8 0.5 135.62 0.6 139.36 0.7 138. 15 

3 2 0.4 186.54 0.5 191.75 0.6 174. 90 
3 0.5 180.83 0.6 181.77 0.7 161.72 
4 0.5 165.47 0.6 170.04 0.7 160.06 
6 0.5 146.25 0.6 150.89 0.7 147.77 

4 2 0.4 186.58 0.5 191.96 0.6 175.41 
3 0.5 180.84 0.6 181.83 0.7 161. 88 

6 2 0.4 186.58 0.5 192.00 0.6 175.55 
3 0.5 180.84 0.6 181.84 0.7 161.92 

1 2 0.5 297.02 0.6 316.39 0.7 295.02 
3 0.6 297.50 0.7 308.78 0.8 271. 19 
4 0.6 262.65 0.7 283.41 0.8 265.48 
6 0.6 214.85 0.7 235.48 0. 8 234. 95 
8 0.7 204.25 0. 8 208. 81 0.9 165.49 

2 2 0.5 311.59 0.6 344.36 0.7 327.11 
3 0.6 309.57 0.7 332.20 0. 8 293.20 
4 0.6 266.94 0.7 296.06 0.8 282.56 
6 0.7 238.64 0. 8 242.64 0.9 176.34 
8 0.7 205.06 0. 8 211.93 0.9 166.66 

3 2 0.5 315. 11 0.6 353.67 0.7 340.54 
3 0.6 311.66 0.7 338.51 0.8 301.36 
4 0.6 267.32 0.7 298.17 0. 8 287.26 
6 0.7 238.85 0. 8 243.74 0.9 176.78 
8 0.7 205.08 0. 8 212.16 0.9 166.87 

4 2 0.5 315.85 0.6 356.49 0.7 345. 98 
3 0.6 311.99 0.7 340.12 0.8 304.41 
4 0.6 267.36 0.7 298.51 0. 8 288.53 
6 0.7 238.86 0. 8 243.90 0.9 176.90 
8 0.7 205.08 0. 8 212.18 0.9 166.91 

6 2 0.5 316.03 0.6 357.56 0.7 349. 02 
3 0.6 312.05 0.7 340.63 0.8 305. 96 
4 0.6 267.36 0.7 298.57 0.8 288. 96 
6 0.7 238. 86 0. 8 243.92 0.9 176.95 

8 2 0.5 316.04 0.6 357.65 0.7 349.50 
3 0.6 312. 05 0.7 340.66 0.8 306.18 

10 2 0.5 316.04 0.6 357.66 0.7 349.57 
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In Tables 1, 2, and 3 it was assumed that the correlation between 

xq k and ^ is given by a Markoff type lag correlogram, 

S , = p * S S with S = S. . It is of some interest to investigate 
a, a+t r  a a+t a 0 " 

the behaviour of the variance of the composite estimator x^ when such 

a pattern does not hold. This will provide some indication as to the 

degree of trust that can be placed in the numerical results already 

given, for an exponential correlation pattern will at best be only an 

approximation to the true situation. Therefore the variance of XQ was 

derived under the assumption of an arithmetic type lag correlogram, 

S0 t  = (p + (t+ l)d)Sy when -(t+ l)d < p , 

= 0 when - (t+ 1) d > p , 

with = Sq . For a one cycle design V(xq) is given by (3.25). To 

further reduce the computational burden, (3. 25) was examined for 

three and four visit designs only, the two visit variance being inde

pendent of any correlogram assumptions as substitution of r = 2 into 

(3. 25) will show. Numerical results for r = 3 visits are presented in 
A 

Table 4 and for r = 4 visits in Table 5. Here Q is the approximate 

optimum Q for the specified values of p and d. The common 

difference d is allotted the values 0.05, 0. 10, 0. 15, 0.20 and 0.30 

and p the values 0.6, 0.7, 0.8 and 0.9. The efficiency gains 
fS 

registered by x^ relative to x^ at Q are given as well as the values 

at Q + 0. 1 . The efficiency gains under the exponential correlation 

(exp. ) pattern assumption are also provided to facilitate a comparison. 

It is observed that: 
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(a) As would be anticipated, the more rapid the decrease in corre

lation between the same units with increasing time interval 

between observations, the less is the efficiency gain of x^ 

over X Q  . 

(b) Approximately the same degree of robustness of the optimum Q 

holds for the arithmetic correlation structure as did for the 

exponential pattern. 

(c) The variance of x^ would seem to be fairly robust with respect 

to the correlation structure assumed for values of p < 0. 8. 

Some distortion is evident when p = 0. 9 . 

Tables 1 to 5 should suffice to provide an adequate picture of the 

efficiency gains that can be derived by using composite estimators in 

rotation sampling designs. It has been concluded that two visits and 

one cycle provide an optimum design for estimating level. Thus if the 

minimum variance of the estimator x^ was the sole criterion for 

selecting an appropriate design, the statistician would always choose a 

two visit one cycle rotation pattern. But such factors as cost, re

spondent cooperation, the estimation of change, etc., warrant a further 

study of other designs. 

2. Finite population results 

In the foregoing tabulations it has been assumed that N, the popu

lation size on any occasion, is large with respect to n, the sample 

size. Thus the finite population corrections (f. p. c. 's) in the variance 

and covariance formulas were safely ignored. But when the sampling 



Table 4. Efficiency gains in per cent of over X Q  with an 

arithmetic correlation pattern near the optimum Q values 

with r = 3 visits 

Q Efficiency q Efficiency q Efficiency 
gain gain gain 

0.05 0. 6 52.79 0.7 56. 12 0.8 41.62 
0. 10 0.5 39.00 0.6 46. 77 0.7 44. 42 
0. 15 0.5 36. 36 0.6 41. 22 0.7 34.35 
0. 20 0. 5 33. 83 0.6 36. 06 0.7 25.60 
0.30 0.4 25.54 0.5 29. 03 0.6 26. 81 
exp. 0.5 39.53 0.6 46.98 0.7 46. 62 

0.05 0.5 27. 21 0.6 28. 68 0.7 20.43 
0. 10 0.4 21.70 0.5 25. 00 0.6 24.39 
0. 15 0.4 20.69 0.5 22. 87 0.6 20. 37 
0. 20 0.4 19.70 0.5 20. 81 0.6 16. 61 
0.30 0.3 14. 96 0.4 17.77 0.5 16. 88 
exp. 0.4 20.49 0.5 22. 45 0.6 19.04 

0.05 0.4 15.28 0.5 15.38 0.6 11. 14 
0. 10 0.3 12.30 0.4 14.38 0.5 13. 56 
0. 15 0.3 11.92 0.4 13.49 0.5 11. 80 
0. 20 0.3 11.54 0.4 12.61 0.5 10.09 
0.30 0.3 10.79 0.4 10. 90 0.5 6. 82 
exp. 0.3 11.46 0.4 12. 44 0.5 9.75 

0.05 0.3 8.67 0.4 8.70 0.5 5.57 
0. 10 0. 2 6.63 0.3 8.31 0.4 7. 89 
0. 15 0.2 6.51 0.3 7. 96 0.4 7. 10 
0. 20 0.2 6.39 0.3 7. 61 0.4 6.32 
0.30 0. 2 6. 15 0.3 6. 91 0.4 4.79 
exp. 0. 2 6. 29 0.3 7.33 0.4 5.70 
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Table 5. Efficiency gains in per cent of over X Q  with an 

arithmetic correlation pattern near the optimum Q values 

with r = 4 visits 

Q Efficiency Q Efficiency Q Efficiency 
gain gain gain 

0. 05 0.6 41. 16 0.7 49. 28 0.8 45.69 
0. 10 0.6 35.32 0.7 36.97 0.8 23.00 
0. 15 0.5 26.39 0.6 29. 94 0.7 26. 54 
0. 20 0.5 23.96 0.6 24. 97 0.7 17.58 
0.30 0.4 17.60 0.5 19.37 0.6 16.09 
exp. 0.6 36.77 0.7 40. 02 0.8 28. 43 

0. 05 0.5 22.34 0.6 25.91 0.7 24. 84 
0. 10 0.5 20.07 0.6 21. 24 0.7 16. 11 
0. 15 0.4 15.53 0.5 17.87 0.6 16.90 
0. 20 0.4 14.55 0.5 15.76 0.6 12. 87 
0.30 0.4 13.58 0.5 13.71 0.6 9. 10 
exp. 0.4 15.47 0.5 17. 80 0.6 16.89 

0. 05 0.4 12.58 0.5 14.35 0.6 13.64 
0. 10 0.4 11.65 0.5 12.35 0.6 9.82 
0. 15 0.3 8.38 0.4 10.72 0.5 10.43 
0. 20 0.3 8.00 0.4 9.82 0.5 8.57 
0.30 0.3 7.63 0.4 8. 92 0.5 6.77 
exp. 0.3 8.68 0.4 9.88 0.5 8. 80 

0. 05 0.3 6.40 0.4 8.01 0.5 7.33 
0. 10 0.3 6.04 0.4 7.15 0.5 5.57 
0. 15 0.3 5.68 0.4 6.30 0.5 3.87 
0. 20 0.3 5.32 0.4 5.46 0.5 2.22 
0.30 0. 2 4.72 0.3 4. 97 0.4 4.64 
exp. 0. 2 4.77 0.3 5.79 0.4 5. 14 
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rate is not small one might inquire as to how the efficiency gains are 

affected. The current occasion variance, V(), is reduced by a factor 

2 2 
SQ/N and the change variance, V(d^), by a factor 4(l-p)Sy/N when the 

finite population is taken into account. Similar reductions also occur in 

V (X Q ) and V (X Q  - x where x^ - x ^ refers to the change in level as 

estimated from the rotation design. Table 6 cites the efficiency gains 

using X Q  and d^ for several infinite cycle rotation designs with small 

N at the approximate optimum Q values. The optimum Q, r and i 

values for a given p are, of course, not affected by the inclusion of the 

f. p. c. F or convenience in comparison the efficiency gains when N is 

assumed infinite are also provided. 

It is noted that in all cases the efficiency gain is greater when the 

f. p. c, is taken into account. This is indeed obvious for the same 

quantity is being subtracted from both numerator and denominator in the 

approximate efficiency ratio. For fixed N, n, r and I the ratio of 

the exact efficiency gain to the approximate efficiency gain is increasing 

as p increases. For the change the situation is reversed; for in

creasing p the ratio decreases. The ratio is not subject to as much 

variation as p proceeds from 0.5 to 0.9 for the change estimate as 

it is for the level estimate. As the sampling fraction decreases the 

difference between the approximate and exact gains for a given p 

rapidly approaches zero. It is therefore concluded that Tables 1 and 2 

which give the efficiency gains using x^ and d^ are always on the 

conservative side and when the sampling fraction is not small the gains 

are considerably larger than those tabulated. 



Table 6. Efficiency gains in per cent using 

N n r i p Gain with 

and f. p. c. 

4 2 2 1 0.5 10. 88 
0. 6 18. 58 
0.7 33. 17 
0. 8 59.24 
0.9 126.70 

6 2 2 2 0.5 8. 11 
0. 6 13.63 
0.7 24. 80 
0. 8 46. 17 
0. 9 101.73 

6 3 3 1 0.5 8. 83 
0.6 15.64 
0.7 27. 21 
0. 8 50. 63 
0.9 115.72 

8 2 2 3 0.5 7. 14 
0.6 11.94 
0.7 21.52 
0. 8 39.68 
0.9 88. 24 

8 4 4 1 0.5 6. 84 
0. 6 12. 26 
0.7 21.68 

and dg in finite populations 

Gain with 

without f.p.c. 

5. 16 
8. 50 

14. 23 
22. 85 
38.78 

5. 26 
8.69 

15. 27 
26.67 
50.64 

4. 23 
7. 25 

11. 97 
20. 20 
36. 65 

5. 26 
8. 70 

15.32 
27. 07 
54. 22 

3.31 
5.78 
9.78 

Gain with d^ 

and f.p.c. 

20.45 
36. 19 
63.90 

120.33 
290. 20 

16.49 
29. 26 
52. 10 

100.59 
251.55 

19. 18 
33.77 
59. 95 

114.37 
278.30 

15.21 
27. 12 
48.43 
93. 97 

236.14 

16.67 
29. 28 
52.36 

Gain with d 

without f. p. 

12.76 
23.43 
42. 83 
83.52 

208.74 

12.37 
22.44 
40. 81 
80.43 

205.05 

1 1 .  1 8  
20. 23 
36.87 
72. 17 

180 .66  

12.36 
22.38 
40.57 
79. 88 

203.56 

9.38 
16. 84 
30.74 



Table 6 (Continued) 

N n r i p Gain with 

and f. p. c 

8 4 4 1 0.8 41.31 
0. 9 95. 87 

9 3 3 2 0.5 6.49 
0.6 11.41 
0.7 19.88 
0. 8 37.65 
0.9 87. 80 

10 2 2 4 0.5 6. 67 
0.6 11. 11 
0.7 19. 91 
0. 8 36. 36 
0. 9 80. 81 

10 6 2 1 0.5 13. 98 
0.6 24.36 
0.7 45. 22 
0. 8 86. 93 
0.9 231.80 

12 3 3 3 0.5 5.73 
0.6 10. 01 
0.7 17.30 
0. 8 32.34 
0.9 73.76 

Gain with Gain with d^ Gain with d 

without f. p. c. and f. p. c. without f. p. 

17. 12 130.07 60.49 
32. 40 249.70 152.65 

4. 23 15.39 11.11 
7. 32 27. 28 20. 00 

12.43 48.74 36.29 
22.30 93.73 70.85 
45. 28 234.68 179.93 

5. 26 14.54 12.36 
8.70 26.02 22.38 

15.32 46.59 40. 54 
27. 11 90.57 79.72 
55.65 227.99 202. 88 

5. 16 23. 25 12.76 
8.50 40.62 23.43 

14. 23 70. 86 42. 83 
22. 85 131.96 83.52 
38. 78 314.76 208.74 

4. 23 14. 03 11. 11 
7. 33 25. 00 20. 00 

12.44 44. 83 36.24 
22. 44 86.56 70.72 
46.71 218.00 179. 86 



Table 6 (Continued) 

Tvt „ Gain with x' Gain with x' Gain with d' Gain with d' J N n r i p  0  0  0  0  
and f.p.c. without f. p. c. and f.p.c. without f. p. c. 

12 4 4 2 0.5 5. 04 3.31 13.22 9.36 
0.6 8. 94 5.79 23.41 16.79 
0.7 15. 59 9. 88 42. 21 30.61 
0. 8 29. 28 17.78 82. 25 60.28 
0.9 71.72 38.59 205.79 152.50 

12 6 6 1 0.5 4.77 2.33 12.76 6.91 
0.6 8. 24 3. 96 22.63 12.45 
0.7 14. 36 6.70 40. 83 22.78 
0. 8 27. 23 11. 99 79. 17 44.79 
0.9 70.34 26. 02 197.19 113. 13 

14 2 2 6 0.5 6. 19 5. 26 13. 84 12.36 
0.6 10. 29 8. 70 24. 86 22.38 
0.7 18. 34 15. 32 44.68 40. 54 
0. 8 33. 14 27. 11 87. 10 79.65 
0.9 72. 34 56. 20 219.63 202.37 

15 3 3 4 0.5 5. 35 4. 23 13.33 11.11 
0.6 9.33 7. 33 23. 81 20. 00 
0.7 16.05 12.44 42. 80 36.24 
0.8 29.73 22.45 82. 82 70.71 
0. 9 66. 47 46. 93 209.09 179. 83 
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H. Variance Estimation 

This dissertation would be incomplete if no mention of the important 

problem of variance estimation was made. In practice and S 

the mean squares and mean products for occasions a and a + t, are 

not known and must therefore be estimated from the sample data. Nor 

is a strict exponential or arithmetic correlation trend likely to be 

entirely realistic. In the single-stage sample designs already con-

2 2 
sidered the estimation of S and S is straightforward. Let s a a, a+t a 

and s denote the unbiased estimators of and S ,. , 
a, a+t a a, a+t 

sa * kf1
(xa,k- ;/ / (n-1) ' 

m _ _ 
sa,a+t * (xa,k " mXa )(x<i+t, k " mxa+t '  

_ n _ m 
where *a = ^2 x^/n, ^ xQ>k/m, 

and m is the number of units matched between occasions a and a + t . 

The estimators so obtained are substituted into ~(3.13) for the corre

sponding population values. Now (3.13) was derived under the 

assumption that - u, the occasion on which the first enumeration in the 

rotation plan took place, is effectively at -oo . This expression there

fore involves variance and covariance parameters which refer to 

occasions prior to the initial interview series and for which estimates 

are not therefore available. Little bias would be introduced in practice 
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if the infinite sums occurring in (3.13) were truncated at a = - u 

provided that u is at least moderately large. Since the terms so 

omitted are weighted by factors Qa << 1, their contribution should be 

2 2 
small. As an alternative to truncation one could set s * s = 

Q -U 

s . = s for a < -u, t « 1.2, .... with negligible bias for the 
a, a-t -u, -u+t 1 17 & & 

same reason as above. This would permit the calculation of the omitted 

infinite sums as a correction to the truncated solution. If a stationary 

covariance structure with an exponential correlation pattern is an 

adequate approximation to the true situation then formula (3.16} could 

be adopted. The variance and correlation parameters could be esti

mated by pooling the data from the available occasions in an obvious 

manner. 

Variance stimation with respect to the change between the current 

and previous occasions may be similarly dealt with. 

A strictly unbiased method of variance estimation is now given. The 

technique involved is of theoretical interest and for this reason it was 

deemed fit to describe the principle here. The practical utility of the 

final result is questionable as the ensuing discussion will reveal. 

The variance of is by definition 

V(J'> « EÛJ, - X0)2 == E(^)2 . X2 . 

An estimator of V(x^) is therefore 

v(x^) = (x^)2 - (X2) , (3.45) 
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and V(XQ) will be unbiased provided that an unbiased estimator of X 

is employed. Since 

_ N 

Xo • 

it follows that 

° = 'k^0-* + WX°'kX°.k '1/N • 
= 1 

^2 ^2 
An unbiased estimator of 2 xn , is obviously 2 wn , x„ , /E(w„ 

k=l °'k k=l °'k °'k °' 

N 
and an unbiased estimator of 2 x_ . x_ , . is 

k#k' °'k °'k 

= 1 

N 

k%, (wo,kwo,k' xo,kxo,k') /E(wo,kwo,k'' • 

*1 

From (3.5) and (3.9) it is seen that 

E{w0,k)  S 1/N» E(w0,kw0,k')  * (n-l-n2Q2/ni)/nN(N-l) , 

and so 

2 û N 
N2(X2) = w0-kx0

2
>k 

N 2 

+ (N(N-l)n^k,w
0,k

w0,k, X0,k X0,k''"n"1_n2Q '°l' • 

= 1 
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Substitution of the weights W Q  ^ into (X^ ), and summing finally 

gives, by virtue of (3. 45), 

i)x0,k) /(Nn! 

+ (N-1)(2 (1-Q) x 
k#k' 
xl 

0,k x0,k' 
+ 2 (l + n Q/n, )2 x 

k#k' ^ 
0,k X0,k' 

= 1 

k=l k=l '  ' 

The index n^ in the summations of (3.46) refer to the n^ units in the 

sample for the first visit of a cycle, and the index n^ to the remaining 

sample units. 

As a check on the procedure Q may be set equal to zero in (3.46) 

so that XQ = XQ . Then (3.46) reduces to 

which is an unbiased estimator of V (X Q ) . 

Note that (3.46) is an unbiased estimator of V(x^) which makes no 

assumptions about the correlation structure over time. It is disturbing 

information. Hence one would expect that this estimator of V (X Q ) is 

lacking in precision. Rao (1962b) employed the above principle to 

develop an unbiased estimator of the variance of a ratio which ignores 

the concomitant information in one component. Using the familiar 

VÇxjj) = (1/n - 1/N)s* 

that the estimator of the term X Q  involves only the current occasion 
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cities data of Cochran (1953), he demonstrated that the unbiased esti

mator furnishes variance estimates which differ greatly from those 

provided by the usual approximate variance formula. Hence an esti

mator of V(XQ) which makes use of the sample data from previous 

occasions to a larger extent would be preferred. 
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IV. MULTI-STAGE DESIGNS AND COMPOSITE RATIO 
ESTIMATORS WHEN SAMPLING ON SUCCESSIVE OCCASIONS 

A, Multi-stage Sample Designs 

In the sampling of human populations the costs involved in travelling 

from one sampling unit to another to collect information might well be 

prohibitive under a simple random sample design. Multi-stage sample 

designs have therefore been developed so that a survey of a given size 

may be conducted more quickly and economically. It is anticipated that 

the savings so introduced would more than offset the loss in precision 

resulting from the clustering of sampled units. 

We shall consider in some detail the theory of sampling on suc

cessive occasions with partial replacement of units as applied to two-

stage sample designs. The extension to multi-stage designs will be 

clear and no elaboration will be required. 

1. Simple two-stage sampling 

A two-stage sample design is characterized by a two-stage hierarchy 

of sampling units. There are N primary sampling units (p. s.u. 's) in 

the population P and the k-th primary (k = 1, 2, ..., N) contains M, 
N 

secondary sampling units (secondaries) where S M. =M. A sample 
k=l k 

of n p. s.u. 's is selected from the N p. s.u. 's and from the j-th 

selected primary (j = 1, 2,..., n) a sample of m. secondaries is 

n 
selected, 2 m. = m. The selection at either stage may be made either 

j=l J 

with equal probability or with unequal probability for the respective 

units and the form of the estimator for some character x will vary 
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accordingly. It will be assumed that the reader is acquainted with the 

structure of these estimators and their variances; they are readily 

available in, e.g., Sukhatme (1954) and Cochran (1953). When sam

pling on successive occasions it will be further assumed that there is no 

immigration or migration of units into or from P. Thus 

(k = 1,2,...,M) is constant on all sampling occasions a = 0,-1,-2,...,. 

2. Rotation of primary sampling units 

A rotation plan for p. s.u. 's is established in precisely the same 

manner as that described in Chapter III for one-stage rotation sampling 

designs. On any occasion a (=0,-1,-2,...,) there are n p. s.u. 's 

in the sample of which n^ are matched with the previous occasion and 

n^ have entered the sample for the first visit of some cycle, n^ 4-n^ = n. 

It will be assumed that m^ secondaries are selected for obser

vation from the k-th primary with equal probability and without 

replacement. In order to give statistical validity to the discussion 

below the m^ secondaries to be sampled from the k-th primary are 

specified for all N primaries in P. This is the technique followed by 

Hartley (1959) in his study of simple multi-stage designs. 

The composite estimator of the population total X Q  on the current 

occasion is 

4 - -X„1j0) + U-Q)50 , (4.D 

where 0 < Q < 1 , 
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x, m1 

i , £ 2 _j£ Z x„ , . , 
0 n k=l mk j=l 0,k,J  

N "l M
k 

Vi " =T £  =£ £  • < 4 - 2 '  

N "l M
k 

X  ,  „  «  —  X  —  S X . , . ,  
-l.° nj k=1 j=1 -l,k,j 

and x , . is the observation on the j-th secondary of the k-th 
a,k,j 

A 
primary on occasion a, and X1 ^ is the composite estimator of the 

A 
population total X j on the previous occasion. Thus X^ is the simple 

two-stage estimator of the population total on the current occasion with 

both primaries and secondaries selected with equal probability and 
«*» <S 

without replacement. X^ ^ and X ^ ^ are similarly defined as 

estimators for the population totals on the current and previous 

occasions respectively using only the n^ matched primaries. Let 

v 1 . * M. /m. with probability m, /M , 
a, k, j k k c 1 k k 

= 0 with probability 1 - m^/M^ , (4.3) 

where j = 1,2,..., M, ; k = 1, 2, ..., N ; a < 0 . Then E(v .) = 1 . 
K a, K, j 

Let (w& j^) denote the set of rotation weight variables that are 

employed in one-stage composite estimation of the sample mean. With 

an infinite cycle design initiated on occasion a * -u < 0 the set would 

be given by (3.5), (3.6) and (3.7). It follows that X^ may be 

written in the alternative form 
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-u N Mk 

Xo = (4-4) 

It is clear that this estimator is of the form of a one-stage composite 

estimator of the total XQ in a rotation design using n estimated 

primary totals on each occasion as the units of observation. Let u be 

large so that the approximation 

-co N Mk 
XL = Z 2 Nw . 2 v . .x . . (4.5) 

0 a*0 k=l a,k j=l Q 'k,J  a ,k, j  

tS 
is valid. The expectation of X^ will be taken over the Ni possible 

rotation patterns for primary sampling units compounded with the 

^k 1 possible selections of m, secondaries from M, secondaries 

™k 

for k = 1.2. . ...N. The w , 's and the v . .'s are independent 
'  a,k a,k, j 

because of the device of specifying the sampled secondaries in each of 

the N primaries. Thus 

* -oo N ^k 

E(XO) = 
1Ï,KÏ1

NE(W^)
JF1

E(V^.J)X^I 

N Mk 

= kW jï: x°.k.j " X° " 

since NE(wn , ) x 1, NE(w , ) = 0 for a< 0, and E(v . . ) = 1. 
UJ K Q.) K CLJ KJ J 

A 
Thus X^ is an unbiased estimator of X^ . 

A A 
In order to obtain the variance of X^, V(X^ ), write 
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A -00 N Mk _ 
XL = S S Nw . S v . . (x . . - X . ) 

0 Q=0 k=l k jxl Q 'k 'J a»k»J a»k 

-oo N Mk _ 

where X , is the population mean of the k-th primary on the a-th 
&$ Jk 

occasion. On setting 

Mk 

UQ, k " Va, k, j Xa, k, j Xa3 k 

where X , = M, X , , (4.6) may be written as 
CLJ XC JK Q-J K 

A -oo N -oo N 
XL x 2 2 Nw , U . + S 2 Nw . X . = A+B . (4.8) 

0 ,.0 k-1 a,k °'k a»0 k«l a 'k a 'k 

Now ^ and W q ^ are statistically independent since U q ^ is a 

function of v , . which is independent of w , . Further 
a, k, j r  a, k 

E(Ua,k} = °' (4.9) 

and V(X|j) * V(A) + V(B) + 2Cov(A#B). (4.10) 

Now 

-co N 
V(B) = V( 2 2 Nw . X ) 

a«0 k»l a 'k a,k 

,2 .. 
is N times the variance of a one-stage composite estimator of the 

population mean in a rotation design with the unit of observation being 

the primary total. Referring to (3. 12) and assuming an infinite cycle 
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rotation design for primaries, it immediately follows that 

2 11 qZ nZ N 2 
V ( B )  =  " 2 ( 1  -  1  ( % o , k  "  ̂  

-oo n p 2n Q N _ 
+ N 2 —Q"Za(CT + —— + 1) 2 (X - X*r/(N-1) 

a= -1 nnl 1 k=l a,k 

-oo oo N 

+ 2N Jo tf, NE(wa, k"Vt, k> k * X V K - t ,  k * XLt W - 1 * -

(4.11) 

where 

N 
X *  *  S X  .  / N  .  

a kxl a,k 

Further, 

-oo N 
V(A) - V( 2 2 Nw U ) 

a*0 k=l a,k 

-oo N ? -oo N 

 ̂ afo J/̂ -kV J0 J,, C-K,k"-,k.%,k.V 
= 1 

_ -oo N 

+N JiCovK-kUa.k,w-'-kU ' '.kl 

=0 

? -oo N 

+  N  J a ' W  C ° V K , k " a , k . V , k ' U - ' . k . ' -
=0 =1 

(4.12) 

The second and fourth terms on the right are zero due to the 
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independence of w , , U and U . . The U . and U , 1 are 
* a, k a, k a, k1 a, k ak 

not, however, independent when the same secondaries are selected 

from a primary over time and hence the third term on the right does not 

vanish. 

Using the product rule for the variance of uncorrelated random 

variables, the first term on the right of (4. 12) is 

-oo N y -oo N ? 

N  JU^KkV" à  à *  

+ E2(Ua)k)V(w0ik)+V(wa)k)V(Uajk)) 

nZ 1 
N ? -oo N -

N 2 E(wf )V(U ) + 2 2 E(W; )V(U ) . (4.13) 
k*l '  » a= -1 k=l '  » 

But V (U 1) = V(2 v , .x , . ) is the variance of the estimated 
a,k j*l a 'k,J  a ,k,J  

total of the k-th primary on occasion a from a simple random sample 

of m^ secondaries selected with equal probability and without re

placement from secondaries, and hence 

VtU„,k> = Mk^ - »<k'  

where 
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Mk 
<k = /("k-D. 

and (4.13) is therefore known. Also 

Cov(wo, k "a, k ' Wa', k Ua', k ' = E(wa, k Uo, k wa', k Ua', k ' 

E 'wa,kUa,k'E(wa ,,kUa ,,k)  * E 'wa,kwa',k'E 'Ua,kUa',k' ' 

But E(U . U . . ) * E(X . - X )(X , . - X ) is the covariance v a, k a',k v a, k a, k v a',k a',k 

between the estimated totals of the k-th primary on occasions a and 

a' and hence 

E(UA,KVK) -MK(4: "4,£X'*''K 

where 

Mk 

Sa,a',k = (xo,k,j " Xa,k , (xa',k,j " Xa',k) /(Mk" U 

Also 

-oo N -oo N 
Cov(A,B) = Cov( 2 2 Nw . U . , 2 2 Nw . X . ) 

a*0 k=l a 'k a 'k a=0 k=l a 'k °»k 

X 0 

due to the independence of w , and U , and because E(U .1 = 0, r  a, k a, k 1 a, k 

Therefore, by virtue of (4. 10), 
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,2 
n„CT N 

v<xo' = n2(; - 5 + -kr ' 2, (xo,k -
1 k=l 

_ n . n Q -oo . N ? 

•f N —— (Q + 2 —— +1) 2 Q 2 (X -X*r/(N-1) 
ml nl a*-l k=l Q 'k a  

? -oo oo N 
+ 2N Z S NE(„ wa„ )  S  (X -  x; ) (x a  -  X t t)/(N-1) 

a=0 t=l k=l 

+  f  " +  " V  »  ^ - 5 ç ) s 0 , k  

Nn, , n Q -oo N , , i ? 

N - . , -oo oo 

+ J„ J «I', kwa-t, k> S„, a-t, k • <*• 14) 

The last term of (4. 14) is determined when the rotation pattern is 

precisely specified. The form under an infinite cycle rotation design 

for primaries is complex and therefore omitted. 

As a specific example consider the one cycle rotation design with a 

stationary Markoff type lag correlogram holding both between and 

within primaries. That is 

Sa " * XÏ'2/<N-1» = J/X0,k " XVZ«N-H = So -

k 

N 

î1 'X0,k-XS'(Xa,k-Xî) /(N-1,  = P"QS0' 

Sa,k " S0,k ' \a,k = »ka S0,k I4 '15 ' 
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for all a, where p is the correlation between primary totals one 

occasion apart and pk is the correlation between observations on 

secondaries of the k-th primary one occasion apart. Referring to the 

derivation of (3.16) for the cross-product expectations of the WQ K'S 

it will be seen that (4.14) becomes 

V ( X ' Q )  *N2S2 I. I + 
n N 2, ,x2 

2Q 

r"(r-l)"n2 (1-Q2 )(1-Qp)2 
( - (r -1 ) p 

+ r(r-l)Q - 2(r-l)Qp + r(r-l)Qp2 + rQ2 - (r2 + l)Q2p + rQ2p2 

+ Qrpr~*(r(r-l)p - (r-l)p2 - r2 Q + 2rQp - (r2 - 2r + 2) Q p2 +r(r-l)Q2p 

(r-l)Q2 p2 ) ) 
^ 2 1  1  2  r  1  

+  N  S  M k ( —  -  y r  ) S 0 , k  [  r n .  
k=l k k 

+ 
2Q 

r2(r-l)2n2(l-Q2)(l-Qpk) 
2 <-(r-l) Pk + r(r-l)Q - 2{r-l)Qpk 

+ r(r-l)Qp2 +rQ2 - (r2 + 1 )Q2 p, + rQ2 p2 + Qr  p*-1 (r(r-l)p, - (r-l)p2 

- r2 Q + 2rQpk - (r2-2r + 2)Qp2 + r(r-l)Q2pk - (r-l)Q2p2) (4.16) 

When independent samples are selected on each occasion within each 

primary then Sq a  t k = ^ anc* (4. 16) simplifies somewhat. The 

second term of (4.16) will become approximately 

N ^ Mk(ST - 1^-1(1 + 2Q2jQ+r-7
1» )SÏ t/n 

k=l M k (r-1)2 (1-Q2 ) ° ,k  
(4.17) 
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2 2 
which is always greater than N 2 M^l/m^ ~ 1 A1^)SQ ^/n. Now the 

entire expression within the square brackets of (4. 16) will possibly be 

less than 1/n and in such cases it would be desirable to maintain the 

same set of secondaries within each primary over time from an 

efficiency point of view. 

When Q * 0, then 

v < 5 o > •  n 2 < ; 4 » s O  +  M k t i r  -
k= 1 k k 

= V(50) 

where XQ is the two-stage estimator of X^ using current occasion 

information only. This conforms with the reduction of the composite 

n mk 
estimator to N 2 (M. /m. ) 2 x„ . . /n. 

k=i k k j=i °'k,J  

Unequal probability sampling of secondaries may be dealt with 

through a redefinition of the secondary weight variables v
a ^ j • The 

extension of the foregoing principles to several stages of sampling 

should be obvious as well. 

3. Rotation of secondary sampling units 

On the first sampling occasion -u a random sample of n primaries 

is selected from the N p. s. u. 1 s in P with equal probability and with

out replacement. This sample remains fixed thereafter. Within each 

selected primary a rotation pattern for secondaries is established as in 
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the Chapter III discussion. In the k-th primary of size M^, m^ 

secondaries are observed on occasion a (a = 0, -1, -2,... * -u) with 

m^j secondaries common to occasions a and a-1 and m^ new 

secondaries on occasion a, so that + mk2 = mk' composite 

estimator 

Â = Qk<k5Li +Â,-i-k5-i,o> + l1-Qk'k5o t4-18' 

is used to estimate the total of the k-th primary on the current 

occasion, where 

m. 
kl A mkl 

kX0,-1 = Mk X0,k,j /mkl kX-l, 0 = Mk X-l,k,j /mkl 

mk 
kxo = ^k =o,k,/™k-

J=1 

/m . (4.19) 

The method of Hartley (1959) will again be utilized to construct the 

composite estimator of XQ and to determine its variance. Define the 

primary weight variables as follows: 

Sk * with probability n/N , 

« 0 with probability 1 - n/N , 

so that E(s^) = 1 . 

Assuming that -u is effectively at -co for variance determination 

purposes, the composite estimator of XQ is 

-u N Mk 
X' = 2 2 s. 2 M. w . . x . . 

0 a=0 kxl k j=l k Q 'k 'J a 'k»J 
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. -oo N Mk 
= S S s. S M, w , . x . . . (4.20) 

axO kxl k j=l k "»k 'J 

The w , . is the rotation weight variable associated with the obser-
a» k* J 

vation on the j-th secondary of the k-th primary on the a-th 

occasion. Analogous to (3.5) and (3.6) these are 

w0 k j = with probability m^/M^ 3 

m 
= (1 + ——. Q^)/m^ with probability m^^/M^, 

kl 

= 0 with probability 1 - » 

and for a < 0 

m, 
w , . * - Q, (Q, + )/m. with probability m. _/M. , 

a, k, j k k m^j k r  1 k2 k * 

= Q~a mk2 (C^ - 1 )/mkmkl with probability (m^ - mk2)/M
k » 

m, 
s (\a(l + —— Qk)/mk with probability * 

kl 

= 0 with probability 1 - ir^/M^ . 

Thus E(wn v  -) = 1/M , E(w ) = 0 for a < 0 . 
UJ K, J K KJ J 

By conceptually specifying the rotation plan within every primary, 

the s, and w , . are independent for a = 0,-1,-2,..., . It then 
k a., k, j 

«S 
follows that XL is unbiased. Also w . . and w , . . are inde-

0 a, k, j a,k', j 

pendent for k 4- k', but w^ k j and w^, k ^ are obviously dependent. 
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Now (4. 20) may be written as 

* -oo N Mk _ 

= Q=0 k=l Sk j«l MkW(l 'k»j (X°»k»j " X°»k) 

N Mk _ 

+ 
kf1

sk].f1
Mkwo,k,jxo,k 

-oo N N 

l 4 -a )  

where 

Mk 
Uask "" Mk Wa, k, j Xa3 k. j Xa,k* E^Ua.k^ ° '  

N 
and U n is independent of s, . Now V( 2 s. X. , ) is the variance 

a,k * k 1
k=1 k 0,k 

of the estimated population total from a simple random of n units from 

N units and hence is 

v ( J , a k x o , k >  '  N 2 t ; - s ' s o -  | 4 - 2 2 >  

-oo 
Further, let U. = 2 U , whence E(U_ ) = 0. Then 

k 
Q=0 Qlk k 

-co N N 

Ï ( I ^ A V -  V (
K ? A V  

N N -
= 2 V(s U ) = 2 E(s')V(U ) 

k=l k k k=l 



107 

where E(s^ ) = N/n and V(U^) is the variance of the composite esti

mator of the k-th primary total which can be written down immediately 

by analogy with Chapter III. Since 

-co N N 
Cov( 2 2 s U , 2 s X ) *0 

Q=0 k=l k k k=l K U,iC 

it follows that 

2 , 1  1  , „ 2  .  N  
N 

= "(- -N)S" + - £  MK 

m 

m. M, 
k2 Q?)sf 

m^m^j k 0, k 

+  2° "J'2 Q"2™ (Q2 +  2  Q,. + 1)S2 + 
a«-l mk™kl 'k 1_k ' " mkl k a, k 

-oo oo 

2 
af0 t=l Mk E^W<1» k> J Wa" t» k, J * Sq» Q-t, k 

"2 <è-s ,so + £ J, Mk v 'xo,k)-k=l 
(4.23) 

Here xL is the composite estimator of the current occasion mean of 
U) 1c 

the k-th primary. 

In particular, suppose that within the k-th primary a secondary 

stays in the sample for r^ consecutive occasions and then drops out 

forever. Assuming the usual stationary Markoff type lag correlogram 

within each primary, i.e., Sq ^ S2 (4.23) becomes 

? 1 1 ? N ^ ? Z 
ViX0>-N (H-n'S0+ n J^k^.k 

_1 
m 

k Mk 
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+ 2QkHrk-1)2 pk+ rk(rk-1,Qk • 2(rk" 1)Qkp
k 

+ rk<rk" 1)QkPk 

+ rkQ
k- (rk + 1,Qk pk + rQk pk + Qkk i'kk"1 'Ik i rk-1,pk- !rk"1,pk 

" rk^k + 2rkQkpk " 'rk " Zrk + 2 'Qkpk + rk'rk" pk 

- (rk - 1 ) p^) /r2 (xk- U2 mk2 (i - Q2 K1 - Qkpk)2 (4. 24) 

Note that when rotation of secondaries within a fixed sample of 

primaries is employed, the composite estimators serve only to reduce 

the within primary component of the variance function. If it is a 

reasonable assumption that the correlation of secondaries between 

occasions is approximately the same within each primary, then the 

tables of Chapter III can be used to construct composite estimators 

within each selected primary with the same approximate optimum 

weight factors = Q. With rotation of primaries, the between 

primary component of variation is reduced under a reasonable choice of 

Q. There may, however, be definite cost advantages associated with 

maintaining a fixed set of primaries. For this reason a rotation of 

higher-stage sampling units is usually preferable. 

There is no problem with variance estimation when employing 

composite estimators in multi-stage rotation designs. When second

aries are rotated within p. s.u.1 s, the variance estimator based on the 

within primary composite estimators will be an unbiased estimator of 

the true sampling variance if primaries are selected with replacement 

and a slight overestimate if primaries are selected without replacement. 
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When the number of primary sampling units in P is small, indi

vidual rotation plans might well be established in every primary. Such 

a design is equivalent to stratified rotation sampling with each p. s. u. 

serving as a stratum. 

B. Theory of Composite Ratio Estimators in 
One-stage Rotation Designs 

Consider a one-stage rotation design where information is collected 

as well on a concomitant character y which is positively correlated 

with the main character x . If the y population mean on the current 

occasion, Y^, is known then a composite ratio estimator of the x 

mean, XQ, on the current occasion is 

% « ̂  To , (4. 25) 

where x^ and y^ are the simple composite estimators 

4) = Qi(*-i + *0, -1 " *-1, o)  + (1 " Qi)x0 ' (4-26) 

y'o = q2(^-I + ^o, -I • y-i,o} + {1 - Qz)yo » (4-27) 

o < Q2 I i. 

The approximate variance of the ratio u/v, where u and v are 

unspecified pairs, is shown, e.g., by Cochran (1953), to be 

V(f> = (E^ÏT2 V(yl -2#| Ccv(x,y)). (4.28) 

Therefore 
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xn 2 Xn 

V(XQ) = V(xJ)) + (J i )  V(y^) - 2(^)Cov(x^y^) (4.29) 
Yo Yo 

x0 

= V(x' - R y' ) where R = %— . 
V U Y 

0 

To find COV(XQ , y^) let 

_ -oo N 

*° = Jo J^o-k^k' (4-30> 

-oo N 
y 
i  =  J „  J i < ^ „ k .  ( 4 - 3 1 '  

where the weights Wq ^ and w^ ^ are identical for the same unit on 

the same occasion except for in w^ ^ replacing in Wq ^ . 

Then 

Covû'0,r0) = zûo yb }  - xo Yo 

i -o° 

" NEt"0, k "i. k - N'SX0 ,y0 
+ N E(wa, k < k»S

Xa, ya 

-co oo 

+ N 2 S (E(wa-k»L t,k) + E<»0.,,k<k>>Sx .y, t  <4"32» 
a—u l— i ci U"t 

where 

N 
S 

} 
a X" '^a-t k=l 

"  ( J , x a , k ^ - t , k - N X a Y a - t ' / ' N - 1 > -  ' 4 - 3 3 )  
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Since V(x^) and V(YQ) have already been given in Chapter III, 

(4. 29) will be known once the rotation pattern is specified. In practice 

one might take Qj = s Q in (4.26) and (4.27). It is evident how

ever that an optimum choice of Qj and Q? which minimizes V(x^) 

will give at least as efficient an estimator as an optimization on Q 

alone. 

If Q. = Q = Q, then w , = w' , and (4.32) becomes 
1 Cé Cl} K Cl| JC 

? 1 ~°° 9 
Cova- .?•) = (NB^k) - B)SXo,yo + E K ,k)S

Xaiya 

-OO 

+ NJa. E(Wa,kWa.,k
)S

Xa,ya,- (4-341 

=0 

Thus to obtain Cov(x^ , y^) when one need only substitute 

S for S , in the formula (3.12) for V(x'). It follows that 
xa ,ya' Q 'a 0 

in such a case the approximate variance of x^ can be procured by 

substituting xajk-RyQjk for x^ k in V(x^). 

XQ will be more efficient than x^ if V(x^) - V(x^) <0, or, from 

(4.29), if 

RV(7j,) - 2 Cov(xq » y|j) < 0 . 44.35) 

Assuming that - Q^» and under the special correlation 

structure 
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3 = S = p_tS 
X

Q 'ya+t X0'yt X0 ,Y0 

S = S = p * s2 , 
ya'ya+t y0'yt y0 

condition (4.35) reduces to 

(4.36) 

RS2 < 2S (4.37) 
y0 X0'y0 

in view of the earlier statement about COV(XQ , ). If also 

S = p S S 
*0'y0 x 'y x0 y0 

then (4.37) becomes 

RS < 2p S , 
y0 x0 

RS 

Px,y > "2S"2 ' (4*38) 

x0 

and if S = S , and R * 1 , 
x0 y0 

"x,y » I '4 '39) 

where p is the correlation between the measurements on the x and 
x,y 

y characters on the same occasion. Result (4.39) is the same 

condition under which a ratio estimator (x Y )/y is a more efficient 

estimator of X then x when S^ = 5^ and R = 1 as shown in, e.g., 

Cochran (1953). It will not be generally true that the correlations 

involved in the two assumptions of (4.36) will be equal. Then no 
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general statement as (4.39) will necessarily follow and one must 

resort to an arithmetic study to determine the optimum properties of 

C. Ratio Estimators in Two-stage Sample Designs 

The problem of estimating the population mean per secondary 

sampling unit when primaries are selected with equal probability and 

without replacement and secondaries are rotated within selected 

primaries will now be discussed. An obvious estimator of XQ is 

* 

* XL 

1X0 " M" (4*40) 

•> 

where XQ is the composite multi-stage estimator (4.20) of the 
N 

current occasion population total Xn and M = 2 M, is the total 
U k=l * 

number of secondaries in the population and is assumed known. It is 
«*» 2 a 

evident that ^X^ is unbiased with variance equal to (1/M) Y(X^) 
A 

where V(XQ) is spelled out in general in (4.23). The between 

primary component of variation of V(X^) is thus dependent upon the 

variation among primary totals, 

2  1  1  ! ( X 0 . k - V  
VW = <N s> ÎH 

A second estimator of XQ is 
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i k-i k °>k 

2Xi = ^ " <4-«) 

S M. 
k=l k 

_ N 
If ail M. = M = 2 M,/N, then (4.42) reduces to (4.40). From 

1 k=l k 

(4. 28) the variance of ^XQ i-s approximately 

• (V (k| Mk :i),k'+R2v( J,Mk> 

n _ n n ? 

- 2R Cov( 2 M, x« , 2 M ))/(E( 2 M ) ) , (4.43) 
k=l k U,k k=l k k=l k 

where 

n 

R = 
n 

E( 2 M.) 
k=l k 

Now 

n _ n _ n nX 

E V , M k X o .k l  =  E ( E V , M k X " . k l  n ) ) " E (
f c

ï
I

M k *o. k > — IT  '  k= 1 n k= 1 ' n k= 1 

0 

n 
E( 2 M. ) » nM , 

k=l 1 

and hence R = Xq . Now 
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n n n 
V{ 2 M, x' )*V(E( 2 M x' I n))+E(V( 2 M x' 

k=l k 0,k n k=l k 0,kl n k=l K U 'K 
n)) 

N 
2 (X 

2,1 1 , k*l 
" n  I n '  N'  — 

o , k - x S ' '  

N- 1 • s K vK,k>-k=l 
{4. 44) 

N _ 
n 2 (Mfc - M ) 

V(
kïl Mk' = °2(i ' S> N - 1 ' (4-45) 

n _ n n _ n 
Cov( 2 M^xX v, 2 MJ = E Cov( 2 x% v, 2 MJ n) 

^  k < > , k ' k = i  

n _ n 
2 M. x' , 

n k*l k 0,ki k*l 
+ Cov (E( 2 Mv x^ v | n), E( 2^ n) ) 

n n 
Cov ( 2 M X , 2 M ) 

n k=l k U,k k=l k 

N 

2 1 1 = (n " R) m • <4-46> 

Thus, in view of (4.43), collecting (4.44), (4.45) and (4.46) and 

simplifying gives 

* . 2 1 1  l M k ( * 0 , k - X 0 > 2  
N  N  ,  _  

V(2X0)= (N (n " N1 $n += „2,MlcV 'x0,k'' /M ' k=l 

(4. 47) 

A comparison of (4.47) and (4.41) reveals that their within primary 
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components of variation agree. The between primary component of 

(4, 47) depends upon the variation of primary means whereas the 

between primary component of (4,41) depends upon the variation of 

primary totals. Thus if the primary sizes vary appreciably then 

would be subject to a considerably smaller variance than would 

JXQ and would therefore be preferred even though it is slightly biased. 

gXg also has the desirable feature that the total number of secondaries 

in the population, M, need not be known. It requires only that the 

be known for the sampled primaries. If primaries are sampled with 

probability proportional to size, it can be shown that there is little 

additional gain from using ratio estimators. 

It would be straying too far from the main subject matter to discuss 

the ramifications of the foregoing problems. Our intent was to illus

trate the methods of approaching the various topics. 
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V. ROTATION SAMPLE DESIGNS INVOLVING A FINITE 
NUMBER OF CYCLES 

A. The I Cycle Rotation Design 

In Chapter III attention was primarily devoted to infinite cycle 

rotation sample designs. A rotation group remains in the sample for 

r _> 2 consecutive occasions, withdraws for m_>r consecutive 

occasions, returns for another r consecutive occasions, and this 

process continues indefinitely. It is in such a design that it is entirely 

realistic to speak of a finite population. Upon setting the recurrence 

time m = co, the one cycle rotation design, with its associated esti

mators and their variances, are obtained as a special case. The 

concept of a finite population becomes somewhat artificial since, sooner 

or later, all population units will be depleted by sampling and a rotation 

group must therefore return. 

The most general systematic rotation design is the I cycle design. 

Instead of recurring infinitely often a rotation group performs a total of 

i cycles of r consecutive visits each in the sample. After each cycle 

the rotation group withdraws from the sample for m_> r occasions, and 

after the i-th cycle it does not return again. Thus after the permanent 

pattern has been established, the sample size on any occasion is irn^ 

units of which rn^ are in the first cycle, rn^ in the second cycle,..., 

and rn^ in the l-th and final cycle. Within each of the cycles there 

is a rotation group on each of the first, second,..., r-th visits. Hence 

there are effectively i one cycle rotation patterns simultaneously 

taking place. These rotation patterns are identical in nature except that 
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they lag or precede one another by a multiple k(m+r), (k= 1,2,.. . ,i-l), 

of consecutive sampling occasions, as an examination of Figure 2 for 

the case r = 4, I = 2 will reveal. 

The same remarks concerning the finite population assumption are 

still valid. We continue to maintain the finite population correction in 

succeeding variance formulas with the rationalization that when a 

rotation group is forced to ultimately return into the sample in a 

moderately large population, the values then assumed should be es

sentially une or related with any earlier sample values. 

The simple composite estimator of the current occasion mean, XQ , 

in an I cycle design is still 

x<0 = Q(x^ +x0j l  - x_ l j0) + (1 - Q)x0 (5.D 

-co N 
= (5'2) 

with variance 

p 1 ? "OO n 3 
vu;,) « (NE(v2

ik) - s ) S 2 + N J _ iE(v2
jk)S2 

-oo 
+ E(Va,kV,k)St,a.- l5-3) 

=0 

It is assumed that the permanent pattern is well established on the 

current occasion so that, for variance determination purposes, the 

survey was effectively instituted on occasion -u = -co. 

The v . of (5.2) are related to the w , of (3. 2) in a simple 
a, k a, k c 
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manner. Since on any occasion a there are i rotation groups on each 

of the 1st, 2nd,..., r-th visits of their cycle, it follows immediately 

that 

v , = wn Ji , NE(vf ) = NE(w2 )/i (a = 0,-1,-2,...,) . 
CLy jS. CLJ CLf Js. U-j Jx 

The cross-product expectations, NE(Vq k 
Va'k^ are somewhat more 

tedious to evaluate in an i cycle design as opposed to an infinite cycle 

design. For example, when i - 2 there is no contribution to 

NE(v , v . ,) when a1 <a-r + l, a < 0, from those rotation groups 
a, k a,k — 

already in their second cycle on occasion a' . 

An explicit expression for the variance of XQ in the general i  cycle 

rotation design need not be presented here for it is in fact a direct 

extension of the infinite cycle variance function (3.13). It is only 

required to truncate the appropriate infinite sums of (3. 13) to corre

spond to the i < oo cycles involved, and to introduce a dummy variable 

s to account for the varying number of product terms NE( w^ kw
ai 

between rotation groups in different cycles on occasions a and a'. 

Thus, for example, 

J0 QS(l+m)+m+1 n2(l +n20/^1(1 - Q)S0j .g(r+m)., /n2 

becomes 

2 os(r+ml+m+1 n2d +^0/^1(1- s-ua-Qis^.^^yt-2. 

and so on. 
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B. The Current Population Survey 

1. The survey design 

The Current Population Survey (C. P. S. ) conducted monthly by the 

United States Bureau of the Census employs a (two cycle) rotation 

sample design. A given rotation group remains in the sample for four 

consecutive months, withdraws for the next eight months, and then 

returns for another four months. It then drops out of the sample and 

does not return again0 Hence, within any month one-eighth of the 

sample segments are enumerated for the first time, another eighth for 

the second time, etc., and the last eighth are interviewed for the eighth 

and final time. As between any two consecutive months seventy-five 

per cent of the segments are in common, and between the same months 

of any two consecutive years fifty per cent of the segments are in 

common. The sample design is illustrated in Figure 2, the current 

occasion being year 0 and month 0 . 

An examination of Figure 2 reveals that, in effect, two rotation 

patterns are simultaneously taking place. These patterns are identical 

in nature save for the fact that one lags the other in time by twelve 

months. Assuming that the permanent patterns have been underway for 

some time, there are four rotation groups in the first pattern or cycle 

and four different rotation groups in the second pattern or cycle. 

Within each of the cycles there is, on any given occasion, one rotation 

group on each of the first, second, third and fourth visits of that cycle. 

If the sample size on any occasion is n and the number of units on each 

visit number of the first and second cycles combined is n^, so that 
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Figure 2. Rotation of sample in the U.S. Bureau of the Census Current Population Survey 
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4n^ = n, then each cycle is individually identical to a four visit, one 

cycle (m = 00) design with sample size 2n^ . 

2. Correlogram assumption 

The variance functions of Chapter 111 have been examined under the 

assumption that the correlation between x , and x . . decreases R CL, k a,k 

steadily as | a - a11 increases. There is evidence that such a state of 

affairs is not always the case. Eckler (1955) commented that in 

economic populations with month-to-month correlations ps the year-to-

year correlation is often much larger than the predicted by the 

exponential correlation model. Thus an underlying cyclic behavior of 

the population may upset the exponential correlation model unless the 

pattern length is a small part of the period. Tikkiwal (1956b) observed 

that in a quarterly series of livestock surveys, the correlations between 

quarters 1, 2, 3 and 4 and the 0-th (initial) quarter for the number 

of cattle on hand at the end of the quarter were respectively 0. 97, 

0. 88, 0. 65 and 0. 90. Such a phenomenon would be anticipated in a 

stable agricultural economy where the holdings would be more-or-less 

uniform from year to year. 

We are thereby led to consider the alternative correlation structure 

Pij = ?! PJ
2 ' (5- 4> 

where 

i - 1, 2, • • •, 10,11 > j 1, 2, 3,..., . 

Py is the population correlation coefficient between the value assumed 

by a sampling unit on a given occasion and that assumed by the same 
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unit 12j +i months earlier, j being a year index and i a month index. 

It is assumed that > p j2 so that the correlogram is piecewise 

monotone decreasing within twelve month intervals starting from the 

current occasion. There is a positive discontinuity at each yearly 

point, the value of the saltus decreasing there as the time interval from 

the current occasion increases. 

3. The simple composite estimator and its variance 

The simple composite estimator of the current occasion mean XQ 

is given by (5.1) and alternately by (5.2). It follows that, for the 

special case r = 4, the rotation weight variables Vq ^ are as specified 

in Table 7. The Vq ^ are obviously independent of the cycle number 

and depend only upon the visit number within a cycle. 

Since NE(vn , ) = 1 and NE(v , ) = 0 for a < 0, x' is therefore 
UJ K CL} JE U 

an unbiased estimator of XQ . The variance of XQ , V(x^), is 

obtained by evaluating the variance function (5.3) with the aid of Table 

7. Some algebraic simplification will give 

v^ô} * (è " *)S0 + Q2s02/(3n) + (3q2 + 2q 
+ 3) 2° Q '2q S2/(9n) 

as -1 

+ (l+3Q)Q13S0j_12/(9n) - (3+Q)2 0(25^^ + QUS^ _13)/(36n) 

- (3+Q)(Q+l)Q2 (2S0# _2 + Q12 S0j _^)/(18n) 

- (3+Q)(l+3Q)Q3 (2SQj_3 + Q l2SQ)_15)/(36n) +^3+Q)(l-Q)Q9S^ _9/(12n) 

- (Q2-6Q-3)Q10SOj _10/(18n) - (Q2 - 14Q - 3)Q^S /(36n) 
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- (Q-1)2Q +Q12Sa>a_13)/(36n) 

- (Q-1)2Q2 S Q"2a(2S +Q12S .u)/(18n) 
ax -1 3 3 

- (3*2>(H3Q)Q3 £ Q"2a(2S + Q12S 15)/p6n> 
as -1 1 ' 

- (3 +Q){1+3Q)Q9  2 Q"2 QS Q/(36n) 
a*-l a 'a"V 

— oo 
- Q10(Q-1)2 2 Q"2aS /(18n) 

ax-1 a, a-iu 

- QU(Q-1)2 2 Q"2aSn n/(36n) 
ax-1 Q,a"u 

+ (3Q2  + 2Û + 3)Q1 2  2 Q"2 QS ,,/(9n) . 
ax-1 a, a-1 ̂  

(5.5) 

2 2 
Assuming that SQ  * ,  Sq 

= ^0 t and the correlation model 

2 2 
(5.4) so that, for example, SQ  A_I4  

=  PJ P2  
SQ » (5.5) may be 

reduced to the form 

V ( % ) X ( N " ^ ) S 0 + S 0  [  8 Q 2 ( Q + 3 )  + (2+Q l2p2H8Q3 

+  7 Q 2 - 6 Q - 9 - 2 Q P I ( - 6 Q 3 - Q 2  +  4 Q  +  3 )  -  ( 3 Q + L ) ( Q + 3 ) Q 2p2 ) Q P L  

+  4 ( Q 2 + 6 Q  +  1 ) Q 1 3  P 2  +  ( Q P L ) 9  ( - 4 Q 3 -  1 5 Q 2 - 6 Q  +  9  +  2 Q P L ( - 4 Q 3 - 5 Q 2  
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+ 6Q + 3) - Q2p2 (12Q3+5Q2- 14Q-3)) ] /36n(l-Q2 ). (5.6) 

Table 7. Weights Vq ^ for with r = 4, m = 8, f * 2 

Occasion 
a 

Visit number 
within cycle 

Weight 

Va,k 

0 1 

2 

(1 - Q)/n 

3 (3 + Q)/3n 

4 

not present 0 

< 0 1 Q"a(l + 3Q)/3n 

2 

3 
Q~a ( -1 +Q)/3n 

4 Q a ( 3  +  Q ) / 3 n  

not present 0 

When x « xn a, k 0, 
k, then p l  x p2 = 1, and 

? 00 

V(x') x (1-Q) V( 2 
t=0 0* V 

2 °° 
= (1-Q) ( 2 Q 

t=0 
2tV(x ) + 2 2 Q2t + S Cov( 

t< s 
xO 
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Substituting the relationships 

v ^ - t »  =  < à - s > s o  

Cov(x_ t,î_ t  s) = -i)S2 ior s = 1,2,3, 

S0 = - for s « 4, 5, 6, 7, 8, and s_> 16 , 

= -^)So ior s  = 9.10,11,12, 

=  ( T ?  - B > S 0  = = 1 3 . 1 4 , 1 5 ,  

and carrying out the indicated simplifications gives 

v(x.) « (i -^)SQ  +SQ(-2Q + 2Q5 + Q9-2Q13+Q17)/4n(l-Q2). (5.7) 

On setting Pj = p^ s 1 in (5.6), it will reduce to (5.7), thereby 

verifying its correctness. 

4. Numerical results for the efficiency of the simple composite 
estimator 

The variance function (5.6) was explored numerically for nine 

selected pairs of (p^, p^) values, viz., (p^, p^) = (0. 9, 0. 9), (0.9,0.8), 

(0.9,0.7), (0.8,0.9), (0.8,0.8), (0.8,0.7), (0.7,0.9), (0.7,0.8), 

(0.7,0.7), at intervals of 0.1 for Q. The relative efficiences of x^ 

with respect to XQ ignoring the finite population correction, -S^/N, 

are presented in Table 8. Because previous tables have ignored the 

behavior of the variance function when Q is not close to its optimum 

value, it was felt desirable to give a complete resume here so that the 



Table 8. Relative efficiency in per cent of with respect to x^ when r = 4, m * 8, I * 2 for 
selected (p^ > P^) pairs 

( P 1  '  P 2 }  

Q (0.9,0.9) (0.9,0.8) (0.9,0.7) (0.8,0.9) (0.8,0.8) (0.8,0.7) (0.7,0.9) (0.7,0.8) (0.7,0.7) 

0. 2 109. 73 109. 73 109. 73 107. 97 107. 97 107. 97 106. 32 106. 32 106. 32 

0. 3 115. 50 115. 50 115. 50 111. 90 111. 90 111. 90 108. 68 108. 68 108. 68 

0. 4 122. 14 122. 14 122. 14 115. 47 115. 47 115. 47 109. 88 109. 88 109. 88 

0. 5 129. 52 129. 52 129. 52 117. 79 117. 79 117. 79 108. 80 108. 80 108. 80 

0. 6 136. 54 136. 54 136. 55 116. 80 116. 81 116. 81 103. 45 103. 46 103. 47 

0. 7 138. 76 138. 85 138. 93 108. 03 108. 10 108. 17 90. 55 90. 60 90. 66 

0. 8 122. 17 122. 92 123. 68 83. 23 83. 66 84. 11 65. 63 65. 95 66. 27 

0. 9 63. 06 65. 46 68. 05 37. 70 38. 73 39. 81 28. 75 29. 43 30. 14 
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reader might gain some concept of the efficiency losses that can occur 

through a poor choice of Q. 

A comparison of the relative efficiencies of XQ with respect to XQ 

at the near optimum Q levels from Tables 1 and 8 proves to be illumi

nating. It will be recalled that the underlying assumptions of Table 1 

are an infinite cycle rotation pattern and a strict Markoff type lag 

correlogram. XQ is seen to be insensitive to both the differences in 

sample design and correlation structures between the two tables. For 

example, when = 0.9 and p^ = 0.7 the optimum relative efficiency 

from Table 8 is 138. 93 % whereas with p = 0. 9, r * 4 and m = 8 a 

relative efficiency of 138. 59% is recorded in Table 1. This is because 

XQ is, to all intents and purposes, dependent only upon the most 

recently acquired sample values as the alternative form (3.2) ably 

demonstrates. The U.S. Bureau of the Census uses a value of 1/2 for 

Q which is somewhat low for an efficient estimate of XQ if p is large; 

Q = 0. 7 is close to optimum for p ̂  = 0. 9 according to Table 8. 

There may be some question in Table 8 as to why, for fixed p^ , the 

relative efficiency of XQ increases as p^ decreases. Now we earlier 

concluded that the longer the recurrence time of a rotation group, the 

more efficient would be the rotation design when a simple composite 

estimator is used. Thus, a plausible explanation is that an observation 

behaves "more like" a new observation the smaller is the value of p^ 

and the approximation to a longer recurrence time is thereby improved. 
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C. A Generalized Composite Estimator 

1. The estimator and its variance 

Consideration will now be given to an improved estimator of XQ in 

a C. P. S. design situation. The structure of this estimator is sug

gested by the assumed correlation model (5.4). The proposed gener

alized composite estimator is 

xjj = ôxjj + (1 — ô)x'0" , (5.8) 

where = Q1(xLi + xq, -1 ™ x-l3 0^ + ^ " Ql^x0 ' (5« 9) 

xo" = Q2^X-12 + X0, -12 ~ X-12, 0^ + ^ ~ Q2^X0 ' (5«10) 

0  <  Q j ,  Q 2 ,  6  <  1  .  

* 
XQ is thus a weighted average of two estimators. The first, XQ , is 

the simple composite estimator (5. 1) employed in a two cycle, four 

visit design. The second, XQ 1 , is a simple composite estimator 

appropriate to a one cycle rotation design with r = 2 visits. These two 

visits are conceptually separated by eleven occasions when no sampling 

occurs, i.e., a yearly survey. On any occasion the first of the two 

rotation groups is composed of those four original rotation groups in the 

first cycle of the two cycle design, the second of the two rotation groups 

being the other four rotation groups in the second cycle. 

From (5.8) it follows that 

V(XQ) x ô2V(XQ) + (1-6)2V(XQ") + 2ô(l-ô)Cov(xJ),x^") . #.11) 

Now V(XQ) is given in general by (5.5) and under the correlation 
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structure (5.4) by (5.6). Let 

N -co 
x I 1 I 

0 
t5-12> 

with variance 

1  , „ 2  
V(xo'> " (NEK,k> " N)S0 " N 2 , EK,k>S. 9 a= -1 

•oo 

+ N Ja. E(U»,kV,k»S=,a' ' <5-13) 

=0 

With the two visit, one cycle interpretation in mind, it is readily 

seen that the system of rotation weight variables u& ^ described in 

Table 9 are appropriate here, x^" is therefore unbiased and conse-
» 

quently x^ is unbiased as well. 

Using the fact that u^ ^ = 0 for a ^ - 12s , s = 0,1,2,..., (5.13) 

becomes, with the assistance of Table 9, 

V t ^ " )= '5 -S ' S 0  + Q 2 S 0 / n  +  ( 1 + Q 2» 2  \  Q I 2 < l S ! / n  
a= -1 

-«2(1+CI2)2S0,-12 /n " Q2"+Q2>2 <5" 141 

With a stationary covariance structure and the correlogram (5. 4), 

(5.14) becomes 

V(x%')= (^ -±)sjj +S^Q2(l+Q2)(2Qz-p2(l+Q2))/n(l-Q2). (5.15) 
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Table 9. Weights u ^ for x'Q" with r = 2, m = oo, i = 1 

Occasion 
a 

Cycle 
number 

Weight 

Ua, k 

Number 
of units 

0 1 (l-Q2)/n 
2n2 

2 (l+Q2)/n 
2n2 

not present 0 N-4n2 

-12, -24, -36,... 1 -Q2
a/12(l+Q2)/n 

2n2 

2 Q2
a/12(l+Q2)/n 

2n2 

not present 0 N-4n2 

^ 0, -12, -24,... all units 0 N 

The covariance term in (5. 11), COV(XQ , x^' '), will next be evaluated. 

In terms of the rotation weight variables u , and v . , 6 a, k a, k * 

_ _ -oo N -oo N 
C O V ( X Q 1  )  =  C O V ( J O  ̂  V A > K X A > K ,  J O  ̂  U A - K X A > K , .  ( 5 .  1 6 )  

It may be shown, by a method similar to that employed in deriving the 

variance function (5. 13), that (5.16) can be written as 

Cov(^.x-) = (NE(U0 ) KV0 J K)-L)S2  



132 

-00 - -oo 

+ N
a?-lE(U».kVa,k>Sa +N  J a,E(U-,kV,k)Sa,a.- <5 '171 

=0 

It may be verified from Tables? and 9 that (5.17) becomes 

c = v ( ^ , )  =  ( i  - 1 ) 1 S 2  +  I  • q ' I+1 i[3+•Ql - (1 •-Q,:I•t:> [ - zs0<_t 

t—0 

+ Q, (1+Q2)Sq^ _9_ t  - Qx (1+Q2)Sq^ _13_ t  ] /(24n) - Q2(1+Q2)s
0j -12^2n^ 

- ] /(24n) +^2 0^ O^^ (1+0^(1+30, 

+ t(l-Q1))[ ~s_ l2ij  _ 12£ +9+t + Q1 S-12i-12,-121+t+l ] /(24n). 

(5.18) 

In deriving (5.18) it is observed that NE(u , v ,) = 0 for all a < 0 
a, K &j le 

-oo -oo oo 
and that N fc) So> - N ^ E(u^ fc) a. t  

=0 

-oo oo 
+ N 2 2 E(u ^ , v , )S . , where the two terms on the right do 

a=0 t=l a ' t»k a 'k a" t 'a 

not contribute identical values as might first be anticipated. 

Application of the stationary correlation structure and some simpli

fication finally reduces (5. 18) to 
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C°V(X^,X»') = (i - i)S2  - Q2P2(1+Q2)S2  /(2n) + pfd+Q2) 

-  Q j 2 p 2{l+Q2)) (3+0,(1+2 p ,  ) + Q2  P x (2+ p ,  ) + 3Q, p2  )/^24n) 

+ Q102P1(1+Q2)S^ [  Q20(p® - Q^p2)(3+Q1(l+2p1) + Q2
Pl(2+Pl) 

+ 3 Q3  p2 ) + (p, - Q, Q2p2)(3p2 +Q l P l ( 2 + P l )  +  Q2(1+2Pi) 

+ 3Q3) ] /(24n(l-ûJ2 Q2)) . (5.19) 

As a check on (5.19) we evaluate COV(XQ ,XQ") directly when 

z . « x- , so that p, * p_ « 1 . Then 
a, k 0, k r  1 2 

_ _ OO 00 

Cov(xq»Xq") * (1-Q,)(1-Q2) Cov( x_^, Q^x ,^) 

o o  ,  _  _  c o , _  c o  ,  _  
- TI-QJ) ti-Qz) QJ2 3  O; v(x.12g) + Q,2 S  Q2  £ Q, Cov(x.12a . t .  

*-12s 1  +  
f
Z ,  Ql2" t  °2 C0v(x_j 2+t» x_ j2) 

L— 1 

00 00 1 o 4. 1 o _ _ 

+ z z Q^s-t ^2s C6v(x_,2^,x_,2,) , (5.20) 
s=2 t=l 

^"*j)S0 " Q2(l+Q2)So/(2n) + Q1(l+Q1)(l+Q2)S2(-2 + Q2+Q2 + Q® 

Q}2 + Q^Q2 - Q, Q2 - of Q2 - Q J
2 + Q J

2 Q2)/(8n(l-Qj2Q2)) . 

(5.21) 



134 

Setting p, - = 1 in (5. 19) and simplifying the resulting expression 

also yields (5. 21), thus providing a check. 

Therefore, by virtue of (5.11), gathering together (5.6), (5. 15) and 

(5. 19) gives the final form 

V(x^) = (^ - i)S2 + Ô2S2 { 8Q2(3+QX) + (2 + ûj2p2)(8Q3 +7Q2 -6Q, 

-9-2Q1P1(-6Q3-Q2 + 4Q1+3) --(3Q, + 1)^+3)Q2p2 )Q, p, 

+ 4(Q2 + 6Q l  + l)0j3 p2 + Q?p9( -4Q3 - 15Q2 - 6Q, +9 + 2Q, p,( - 4Q3 

-5Q* + 6Q l+3) - Q2p2(l2Q3 + 5Q2- 14Q, -3)) } /(36n(l - Q2 ) ) 

+ (1 - Ô)2 S2 Q2(l + Q2)(2Q2 - p2(1 + Q2) )/(n (1 - Q2 ) ) 

+ 6(1 - ô)S2 ( - 12Q2(1 +Q2)(1 - Q}2 Q2
)p2+Q1p1(1"Q12Q2)(-2 

+ Q®P®(1+Q2)-Q|2P2(1+Q2)) (3+Q1(l+2p1)+Q2p1(2+p1) + 3Q3p2) 

+ Q1Q2P1(1+Q2) [ Q20(P®-Qjp2)(3+Q1(l+2p1) + Q2p1(2+p1) 

+ 3Q3p2) + (p®-Q®Q2p2)(3p2 +Q1p1(^ + p1)+Q2(l+2p1) 

+ 3Q3) ] }/(12n(l-Q1
12Q2)). (5.22) 

2. Numerical results for the efficiency of the generalized composite 
estimator 

The numerical investigation of V(XQ) cited earlier in this chapter 

was, in fact, only a portion of an overall study of the variance function 
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V(x^). It is evident that upon setting 6=0 in (5. 22), V(x^" ) will 

arise as a special case, whereas setting 5=1 in (5.22) yields VJ(XQ) . 

The values assumed by Pj » P2 
an(* 0, have already been specified in 

Table 8. In addition, was assigned the same range of values as 

those of Q, and ô varied from 0.0 to 1.0 at intervals of 0.1. 

These calculations were made possible by the availability of a high

speed electronic computer. 

Those values of Q,, and 5 which approximately minimize 
» 

V(X^) for the nine (p p^) pairs are given in Table 10. The resultant 

relative efficiencies with respect to the sample mean XQ are tabulated 

as well. Included directly below of these approximate optimum sets are 

those two combinations of parameter values which produce relative 

efficiencies that most nearly approach the indicated optimum. The 

* 

relative efficiency of XQ with respect to both x^ and x^11 using the 

approximate optimum parameter values for each of the three estimators 

is presented in Table 11. The approximate optimum value of » i.e., 
» _ _ * 
Q^i which minimizes V(x^") is cited as well; those for x^ and x^ 

are already available in Tables 8 and 10 respectively. 

Tables 10 and 11 reveal that appreciable efficiency gains may be 

achieved through the use of a generalized composite estimator rather 

than a simple composite estimator under the assumed correlation model. 

Although the tables virtually speak for themselves, the following obser

vations are of some importance: 

(a) The figures reported in Tables 10 and 11 may again only be 
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Table 10. Relative efficiency in per cent of x^ with respect to x^ at 

approximate optimum Q,, Q^» 6 values for selected 

( P l , P 2 )  p a i r s ,  r  =  4 ,  m * 8 ,  J É = 2  

n n x Relative 
P1 p2 1 2 efficiency 

0.9 0.9 0.8 0.7 0.5 240.12 
0.8 0.7 0.4 239.28 
0.9 0.7 0.3 235.85 

0.9 0. 8 0.8 0.6 0.5 188.14 
0.8 0.7 0.6 186.70 
0. 8 0.6 0.6 186.06 

0.9 0.7 0.8 0.5 0.6 166.88 
0.8 0.6 0.6 166.78 
0.8 0.5 0.5 166.03 

0.8 0.9 0.8 0.7 0.4 210.45 
0.8 0.7 0.3 209.37 
0.7 0.7 0.4 206.42 

0.8 0.8 0.7 0.6 0.5 162.65 
0.8 0.6 0.4 162.54 
0.7 0.6 0.4 160.82 

0.8 0.7 0.7 0.5 0.5 144.62 
0.7 0.6 0.6 144. 42 
0.7 0.5 0.6 143.11 

0.7 0.9 0.8 0.7 0.3 189.09 
0.7 0.7 0.4 188.32 
0.7 0.7 0.3 188.20 

0.7 

C
O

 o
 0.7 0.6 0.4 149.26 

0.6 0.6 0.5 147.90 
0.6 0.6 0.4 147.63 

0.7 0.7 0.7 0.5 0.4 132.71 
0.6 0.5 0.5 132.61 
0.6 0.6 0.6 132.25 
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Table 11. Relative efficiency in per cent of x^ with respect to x^ 

and x^" at the respective approximate optimum Q,, Q^, 6 

v a l u e s  f o r  s e l e c t e d  ( p , ,  p ^ )  p a i r s ,  r  =  4 ,  m  =  8 ,  1 = 2  

pl p2 

* 

Relative efficiency x^ 

with respect to x^ 

A 

Relative efficiency x^ 

with respect to XQ" 
a 

°2 

0.9 0.9 173.05 153.67 0.6 

0.9 0. 8 135.51 148.01 0.4 

0.9 0.7 120.11 144.71 0.3 

0
0
 o

 0.9 178.66 134.69 0.6 

0.8 0. 8 138.08 127.95 0.4 

0
0
 o

 0.7 122.78 125.41 0.3 

0.7 0.9 172.09 121.02 0.6 

0.7 0. 8 135.84 117.42 0.4 

0.7 0.7 120.78 115.08 0.3 

regarded as approximate optima, for V^x^) was investigated 

for combinations of Q,, and 6 at discrete intervals. 

Further, the stationary assumption for the variances and 

covariances, and the assumed correlation structure are at best 

only inexact models of the true conditions in a specific sampling 

situation. 

(b) Since the specification of a two cycle design necessarily demands 

that the population size N be effectively infinite, the deletion of 
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the finite population corrections from the calculations involved 

in Tables 10 and 11 is wholly justified. 

* _ 

The efficiency gains in employing rather than XQ as an 

estimator of XQ are well worthwhile for all of the nine (p,,p„,) 

combinations explored. From Table 11 significant gains over 

the simple composite estimators XQ and XQ" are also in 

evidence. For example, when p, *0.8 and * 0.9» the 

* _ _ _ 
relative efficiencies of XQ with respect to XQ s XQ and x^" are 

210.45%, 178.66% and 134.69%. 

Thus XQ 1 , which ignores all sampled information but that 

collected on occasions -12s , s * 0,1,2,..., can be a more 

efficient estimator of XQ than XQ . This is because the 

structure of XQ is such as to weight the data gathered on the 

12s 
prior occasions -12s by factors (approximately equal to) Q, . 

This is desirable under a strict exponential correlation model 

but inefficient when high year-to-year correlations exist. 

A 
The simultaneous optimum values of Q, and in x^ are 

not in agreement with the individual optimum values of Q, in 

XQ and of in x^" . This discrepancy is due to the 

(positive) correlation existing between XQ and XQ" , and this 

correlation varies with the choice of Q, and . 

Some latitude in the selection of Q,, and 5 is permitted 

without appreciable efficiency losses from the optimum 

attainable efficiency resulting. 
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The reader is justified in asking why the estimator 

x0 " Q1X0 + °2 tX-l + x0, -1 " X-l,0^ + Q3^X-12 +X0, -12 ™ X-12, 0* 

(5. 23) 

where 0 < <1, = 1» was not considered in prefer

ence to XQ. It apparently possesses all of the advantages of XQ and is 

a function of the two parameters QI, and (for Q, = 1 - - Q^) 
A 

compared with the three of XQ . The functional form (5. 23) for a 

composite estimator has been termed a "multi-component estimator" 

and will be examined in detail in Chapter VI. The discussion there will 

reveal that to obtain an exact general variance function for (5. 23) 

appears to be an intractable problem. Further results of Chapter VI 

will lead us to the inference that an optimum choice of Q,, and 6 

* _ 
in XQ will give an estimator which is almost as precise as XQ under 

an optimum choice of Q', and in XQ . 

This chapter has indeed emphasized the important role that the 

choice of estimator as well as the choice of design plays in exploiting a 

sampling situation to the utmost. 
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VI. MULTI-COMPONENT ESTIMATION 

A. The Estimator and Its Exact Variance 

The possibility of improving the composite estimator 

4)  = Q i<l  +  x o,- i  - X -1 ,0 )  +  ( 1 ' Q > X 0 ( 6 | 1 )  

by the addition of a third term which explicitly utilizes the estimate of 

change between the current occasion and a previous occasion - a < - 1 

will be examined. This multi-component estimator is 

x0 = Q1X0 T Q2^X-1 + x0,-1 " x-l, 0^ + Q3^X-a * X0, -a " X-a,0^ 

(6.2) 

where Q, + + Q-j * 1 • It is, of course necessary that there be a 

matching of some sample units between the current occasion and 

occasion -a if such an estimator is even to be considered. 

Estimator (6. 2) is intuitively appealing in sampling situations 

where the assumption of an exponential correlation model would be 

unrealistic. It is indeed possible that the trend of the correlation 

coefficient of a sampling unit characteristic over time may not be 

monotonely decreasing due to, perhaps, a seasonality in the character

istic being estimated. For example, consider a survey conducted 

during June and December, say, of each year to determine employment 

in the construction trade in the suburban areas of a city. It is evident 

that the value assumed by a sampling unit twelve months ago yields 

more pertinent information concerning the value associated with that 

same unit on the current occasion than would an observation collected 

six months ago. Thus the number of days a carpenter is unemployed 
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during December of the current year would be suspected to be more 

highly correlated with the number of days unemployed twelve months ago 

rather than with the previous June figure. Empirical evidence of such 

a state of affairs has already been cited in Chapter V0 Estimator (6e 2) 

with a = 2 would appear to exploit this specific situation. 

It is not, however, obvious that a multi-component estimator will 

produce any appreciable gains in efficiency over a simple composite 

estimator such as (6.1) since the information supplied by the third 

component of (6. 2) is implicitly contained in the second component. 

The efficiency will certainly not be less if optimum values of Q,, 

and are used to minimize the variance of (6, 2) for the optimization 

would necessarily select = 0 rather than permit losses in efficiency. 

In order to determine the variance of (6. 2) it is necessary to 

express it first as a linear function of the sample observations. 

Accordingly, let 

+ xt,t-l " Xt-l,t 

(6.3) 

where a > 1 , Multiplying (6,3) through by Q* and putting 

" QZ °3 4' ' 

yields 

Ut " °3 Ut-1 - Q! Qf+1 Ut-a + Q2 °3 (Q1 \ + QZ \t-l + °3 2 3 t-1 

(6.4) 

where 
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ôt,t-l = Xt,t-1 " xt-l,t '  

^t, t-a Xt, t-a Xt-a, t 

Let 

xt ~t — t Q , » , . . ) .  ( 6 . 5 )  « t )  -  Q 2
Q

3 ( Q
1 * t  

+  Q
2

6
t , t - l  ' • ' S ' t . t - a  

Then (6.4) becomes 

Ut " QZ °3 Ut-1 * Ql Q3+1 Ut-a = «*>• <6 '61 

This resembles a linear autoregressive scheme of order a. The 

solution of such a difference equation is discussed, for example, by 

Kendall -(1948). The autoregressive equation 

x t * b i x t - i  +  -  +  b p x t - p  =  V  < 6 - 7 1  

subject to the conditions that (a) |  | < œ as t —» -oo and (b) X^_ 

is defined for t —> -co, has the solution 

oo 
x, - 2 g, Y , (6.8) 

t s=0 

where 

g s  =  2  S i 1 . . . 6 / ,  

p 

the summation being over all s,, s^, ...»s subject to 2 s^ = s , and 
i=l 

are the roots of the characteristic equation 
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ép + b,ep_1 +... +b .e +b = o, 
i p-i p 

with J |  , ..., | ê |  < 1 . 

Hence for a > 2 we are forced to solve a higher order polynomial 

equation. Since (6.6) involves unspecified coefficients and it 

is not in general possible to give an explicit expression for . The 

problem is therefore limited to the case where a = 2, thereby requiring 

the solution of only a quadratic equation. With a = 2 

g . « « ; + e ; - i e 2 + - + M r l + * i  

= Ui+1 - lJ+1)/(^ - l2). (6.9) 

where £, and are the roots of + b, % + b^ = 0, providing that 

I I  <  i ,  i e 2 |  <  i .  

Hence, corresponding to the multi-component estimator 

*t * Ql*t + û2( ît-l + + Q3 (<L2 + '  (6 ' 101 

there arises the difference equation 

"t " Q2Q3 Ut-1 " °2 Q3 Ut-2 = «'»• l6 '") 

The roots of the associated characteristic equation 

^ " °2 °3 « " °2 °3 * 0 

are 

e, = Q3 + Q2 û3y QZZ + 4Q3 ) / 2 = Q2 Q3(Q2 + B)/2 , (6.12) 
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6, = <«2 °3 " °2 Q3\IQ2+4Q3 " 2 = °2 Q3'C2 " B>/2 • 2 3 2 
(6.13) 

where B =\/Q2 + 4Q3 . (6.14) 

It is easily verified that < 1 , ^2 j < 1 in all cases, for 

Q, + + Q3 = 1 implies that Q ^ Q ^ <  1 / 4  (an obvious extension of the 

fact that PQ < 1/4 in simple binomial sampling) and therefore that 

Q2 Q3 < 1/4. An upper bound for £, is therefore found by setting 

Q2 Q3 = Q2 Q3 
s  1/4, Q2 s Q3 = 1 in (6. 12) and this yields 

< 0.404 < 1.0. Since £, is non-negative, therefore | £, | < 1 . 

Similarly an upper bound for is determined by setting &2 * Q3 = 0 

in (6. 13), giving £2 < 1/8, A lower bound is given by putting 

Q2Q3 = 0 and Q2 = Q3 = 1 in (6.13), so that > -51/2/8 >- 1. 

Hence I l2 < 1 . The solution of (6.11) is thus 

-oo 
U * S 

t  a=0 

(Q2Q3(Q2+B)/2)'a+1 - (Q2 Q3(Q2-B)/2)"a+1 

0(t + a) , 

(6.15) 

from (6. 8) and (6, 9). 

By putting t = 0 in (6. 15), it follows that 

x = Q. xn + CL(x" +x x_i J + Go(x'\ +xn - x_. _) = Uf  0 10 ' 2 -1 0, -1 -1,0 3 -2 "0,-2 -2,0 "0 

I * 
Q*0 

Q +B "aH Q -B "a+1 

(-4— ) -(-V-) tQlXa + Q2 5a, a-1 +Q3 5a, a-2 * 

( 6 . 1 6 )  
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It is assumed for purposes of variance determination that the survey was 

effectively initiated at a * -co . 

Following the procedure developed for the simple composite esti

mator XQ in Chapter III, (6.16) is now expressed as the sum of 

products of weight variables w
a a- * 0,-1, -2,... ; k = 1,2,...,N, 

and the values Xq ^ assumed by each unit in the population irrespective 

of whether or not it is sampled on occasion a. If the k-th unit is not 

in the sample on occasion a, then Wq ^ = 0 . Thus (6.16) may be 

written in the alternative form 

_ -co N 

(6a7) 

Consider the one cycle rotation design (m = oo) of Chapter III 

wherein a sampling unit remains in the sample for r^ 2 consecutive 

occasions. It then drops out of the sample and does not return. The 

sample size on any occasion is n = rn_, , n^ units being rotated out of 

the sample to be replaced by n^ units on their first visit. 

By expressing (6. 16) explicitly in terms of the x^ ̂  as in (6. 17) 

it is seen that for occasions a < -2 the following five sets of weights 

are appropriate, where, for brevity 

CL + B Q - B 
—^ = C, —^ = D. (6.18) 

(a) Units in for a first visit at a: 

w  = i ( c - ^ ( — )  
a, k B xn-2n2 n-n^ n 
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- D - ° - V Q 3  
n-Zn^ n-n2 

DQ_ D Q. 
2 + —1)). 

n 

(b) Units in for a second visit at a: 

w 
a, k B 

^  + C 2 ( ^ 1  + - % -  ) ) - D ^ - \ -  ° 3  

'n-Zn^ n"n2 n n-n. Ln-2n„ 

XZ , Q1 , QZ - ^ 1  +  +  - 5 -  ) ) 1  
n-n2 

1 n n-n^ J 

(c) Units in for an (r-l)-th visit at a: 

Wa, k e B 

-Q, Q1 Q, Q, - Q, 
C ( + C (-1 +—— +—j— )) - D ( -

v n-n2 
v n n-n^ n-Zn^ n-n2 

Q, Q Q, 
+  D<lf  +  +  ]  

(d) Units in for an r-th visit at a: 

w k, (Î1 +A_ +_^_ 
a, k B n n-n_ n-Zn. 

). 

(e) Units in for a 3rd, 4th, ..., (r-3)rd, (r-Z)nd visit at a: 

w 
a, k B 

^  + c 2 ( ^  +  A  +  ^ 3  „  
n-Zn2 

n-n2 n n-n2 n-Zn^ 

+ D2 ( ^ 1 + A  + _ ^ _ „  
n-Zn^ n~n2 n n-n2 n-Zn^ 

When a = 0 the corresponding weights are as follows. 
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(f) Units in for a first visit at a = 0: 

„ Q1 
W0,k~ n ' 

(g) Units in for a second visit at a = 0 : 

0, k n n_n2 

(h) Units in for a 3rd, 4th,..., (r-l)-th, r-th visit at a = 0 : 

w „ ,  =  +  A .  +  ^  
0, k n n-n2 n-2n^ 

When a = -1 the appropriate weights are as follows, 

(i) Units in for a first visit at a = -1 : 

Q1 Q2 °2 
w 

-1, k n n_n2 

(j) Units in for a second visit at a * -1 : 

Q1Q2 + °2 °2 W ! , = + 
-1, k n n-n n-n. 

(k) Units in for 3rd, 4th,..., (r-2)nd, (r-l)-th visit at a * -1 

Q, Q. Q2: Q- Q, Q, 
w , , = + —— + L 5 ù 

-1, k n n-n_ n-2n9 n-n. 

(1) Units in for r-th visit at a = -1 : 

Q, Q_ Qy Q-, Q, 
w , , = * + —— + £ 3 

-1, k n n-n n-2n. 
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The complexity of the above system of weight variables when a < -2 

leads us to consider a further simplification of the problem in order to 

obtain an explicit expression for the variance, V(XQ ), of the estimator 

XQ . Accordingly let r = 3 so that a unit remains in the sample for 

three consecutive occasions before dropping out forever. Table 12 

exhibits the entire system of weights Wq ^ appropriate to this situation. 

It may be verified that 

NE(wn v) = 1 , NE(w ,) = 0 for a< 0, 
UJ K CL| K 

so that XQ is an unbiased estimator of . 

The variance of x^ is given by the general formula developed in 

Chapter III, viz., 

? l ? —oo - ~ 
V t *0> = <NE<"0,k>-S>S0+N 2  , E K ,k>Sa 

a= -1 

-oo 
+ N 2 E(w kwa, )S , , (6.19) 

apa » » » 
=0 

2 2 
where Sn, S • S . are defined as in (3.11). 

0 a a, a 

Table 12 of weights is employed in evaluating the terms of (6.19). 

The algebraic manipulations involved are extremely tedious. Some of 

the intermediate calculations are presented here to assist the reader 

who might have reason to follow the algebra himself. 

NE(WQ jk)S^ = (2 + QZ
2+ 4Q| + 2Q2Q3)S^/6n2 , <6.20) 



Table 12. Weights Wq ^ for the multi-component estimator with r * 3 

Occasion - Visit Weight 
a number w . 

a, k 

0 1 (1 -Q2-Q3)/3n2 

2 (2 + Q2 - 2Q3)/6n2 

3 (2 + Q2 + 4Q3)/6n2 

-1 1 Q2( - 1 - 2Q2- 2Q3)/6n2 

2 Q2(- l+Q2-2Q3)/6n2 

3 Q2(2+Q2 + 4Q3)/6n2 

< -2 1 (C"a-1(-6Q3 -3CQ2 + 2C2Q1) - D"a_1(-6Q3-3DQ2 + 2D2Q1))/6Bn2 

-a, „ ̂  ^ i ^-a (G™ (-3Q2 + 2CQ1 +3CQ2) - D "( - 3Q2 + 2DQX + 3DQ2) )/6Bn2 

(C"a+1 - D'a+1 ) (2 + Q2 + 4Q3)/6Bn2 
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NB*W-l,k)S-l = Q2(1 +Q2 + 4Q3 +Q2 + 4Q3 + 2Q2Q3)S-l /6n2* (6,21) 

In evaluating the second and third terms on the right of (6. 19) the 

2 2 
assumption of constant variance , a *-1,-2,..., is made. 

Then 

"°° 2 2 ? ~°° 
o>S_2NE(waik,So . S„ J (C"a+1 -D"a+1 )2 (2 + Q2 + 4Q3)2 

+ (C'a(-3Q2 + 2CQ1+3CQ2) - D-u,(- 3Q2 + 2DQ1 +3DCy) 
-a, 

+ (C"Q"1(-6Q3-3CQ2 + 2C2Q1) - D"a_1(-6Q3-3DQ2 + 2D2Q1))2 /36B2n _ 

(6. 22) 

The following relationships were of use in simplifying this component. 

C + D * Q2, C2 + D2 * Q2 + 2Q3, CD * - Q3 , 

C3 + D3 = Q2(Q2 + 3Q3), C4 + D4 = Q4 + 4Q2 Q3 + 2Q2 , 

C5+D5 = Q2+5Q3 Q3+5Q2 Q2, C6+D6 = Q2+6Q4Q3+9Q2Q3 + 2Q3 , 

(1 - C")(l - D" ) « 1 - Q2-2Q-+Q2, S C~""~" * C"/(l - C") , 
C a*-2 

•oo 
,-2a-2 

-oo -co 
2 D-2a"2 = D2/(l-D2), S (-Qo) = Q-/(1+QJ. 

a*-2 a= -2 
(6.23) 

The final result is 

2 NE(w2 
k)S2 = S2 [ Q2(16Q3-8Q4-8Q3) + Q2(12Q2+40Q 

q=  -2  *  
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+ 40Q4 - 4Q5
3 - I6Q3 } + Qg(24Q3 + 18Q3 + 2Q* - 8Q3 ) + + 38Q* 

+ 46Q3 + 12Q4- 4Q® ) + Û|(9Q3 + I7Q3 + 9Q3 - 2Q4) + Q2(l + HQ3 + I3Q3 

+ 3Q3 ) + 0^(1 +3Q3 + 2Q3 ) + Q®(1 +Q3) + I6Q3 - I6Q3 ] /6B2n2(l +Q3). 

(1 -Q2-203+03) . (6.24) 

Adding (6.24) to (6.20) and (6,21) gives 

* NE '<k)Sa = S0 /3n2 + S0(Q2 (SQ3 + 80= - 16Q^) + Q2(8Q3 + 24Q2 

a=0 

3 . _3,z_ . ,„^2 .^3 , , ~4,_ , , „^2X . ^5 _L I2O3 - 4CÇ ) + Q2(603 + I8Q3 - 4Q3 ) + Q2(2 + 4Q3 +40^) + 0^(1 +40^) 

+ 32Q3 - 16Q4 - l6Û3)/6n2(Q2 + 4Q3Kl +Q3)(1 - Q2 - 2Q3 +Q* ). (6.25) 

Since r * 3 it follows that 

-co -co 

NJa, Eiwa,kW-.',k)Sa,a. " 2N J0 
EK, tVl, k)Sa, a-i 

*0 

-co 

+ 2Nafo E(W".kWa-2„k)Sa,a-2-

Let 

Sa,a-l"PlS0' Sa,,-2 =P2S0 ' <6 ' 26> 

Then 

2NE(w0,kW-l,k)S0,-l = 2PlSo(Q2(-4-10Q3-4C!3) 
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+ Q2{-4 + 4Q3) - Q|)/36n2 . (6.27) 

2NElw-l, kw-2.k>S-l. -2 * 2"1 S0<°2 '8Q3 +14Q32- 4Q3 » + Q2'2Q3 + 4Q3 > 

+ Q3(- 1 - 5Q3 - 4Q2) + Q2(2+4Q3) - Q2)/36n2, (6.28) 

where the relationships 

C - D = B, C2-D2 = BQ2, C3 -D3 = B(Q2+Q3) , (6.29) 

were used. Further 

-OO ? "CD 
(C"a+1 -D"a+1)(2+Q2 

+ 4Q3)(C"a+1(-3Q2 + 2CQ1+3CQ2) - D'a+1 (-3Q2 + 2DQ1 + 3DQ2) ) 

+ (C"a(-3Q2 + 2CQ1 +3CQ2) - D~a(-3Q2 +2DQ^ +3DQ2) ) (C"a(-6Q3 - 3CQ2 

+ 2C2Q1) - D"q(-6Q3-3DQ2 + 2D2Q1))] /362Bn2. (6.30) 

Using the relationships in (6. 23) and the additional result 

C7 + D7 = Q2 + 7Q2 Q3 + 14Q3 Q2 + 7Q2Q3 , (6.31) 

(6.30) reduces to 

-co 
.3 . __4 . __5 

2N
ai

S_2E(wa,kwa-l,k)Sa,a-l = 2"l S0 f Q^Z^iOQJ^ZQ; 

- 56Û3 + 16Q7 ) + Q2(-32Q3 + 56Q3 - 8Q3 - 16Q3 ) + Q3(4Q2 + 30Q3 + 4Q4 
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-  2 6 +  2 O Q 3  )  +  Q g ( - 8 0 2  +  7 8 Q 3  +  2 2 Q 4  -  2 O Q 3  )  +  Q 2 ( -  Q 3  -  2 7  Q 2  -  4 I Q 3  

- I5Q3 +4Q3) + Q6
2{8Q3 + 4OQ3 + 22Q3 - 4Q3) + Q7(- I-I2Q3- H Q 3 -  3 Q 3 )  

+ Q2(2 + 6Q3+4Q2) + Q^(-1-Q3)] /36B2n2(l+Q3)(1 - Q2 - 2C*3+Q2 ) . 

(6.32) 

Adding (6.32) to (6.27) and (6.28) finally results in 

"°° " 2 . „„^3 .,^4 
2Naïo E 'W».kwa-l,k)S«,a-l * 

Q2( -  I6Q3+8Q3 +32Q3 - 24QJ) 

+ Q2(- 16Q3 +40Q2 - 24Q|) + Q2( - 4 + IOQ3 +32Q2 - 6Q3) + Q^- 4 + 34Q3 

-6Q2) +q|{2 + 6Q3) +6Q2] /36n2(l+Q3)(Q2 + 4Q3)(l-Q2-2Q3+Q2) . 

(6.33) 

Again, 

2NEK,kw-2,k)S0,-2 = 2P2
So(2+Q2 + 4Q3) (C(-6Q3-3CQ2 + 2C2Q1) 

- D(-6Q3 -3DQ2 + 2D2Q1))/36Bn2, 

= 2p2S2(2 + Q2 + 4Q3)(-2Q2 Q3 - Q2(l +2Q3)- 20^ - 4Q3 - 2Q2)/36Bn2 . 

<6.34) 

2NE(w. l ikw,3>k),3 -2p2S2(2+Q2 + 40;)(C2<- ̂  -3CQ., 

+ 2C2Q1) - D2(-6Q3-3DQ2 + 2D2Q1))/36Bn2, 

= 2p2S2(2 + Q2 + 4Q3)(Q2(- 5Q3 - 4Q2) - 4Q2 Q3 - Q^(l +2Q3)- 2Qg)/36Bn2, 

(6.35) 
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where, in addition to (6, 29), the relationship 

C4 - D4 = B(Û2 + 2Q2Q3) (6.36) 

was employed. Also 

-OO 7 -GO ,1 ,] 

2N 2 E(w w )S ,2 =2p2S0 Z (C- - D" 1(2 + 0, 
a =  - 2  a =  - 2  

+ 4Q3) <C"q+1(-6Q3-3CQ2 + 2C2Q1) - D"q+1(-6Q3-3DQ2 + 2D2Q1)) 

/ 36B2n2 . 

Using the relationships in (6,23) and (6,31) and also 

C8 + D8 x Q8 + 8Q2Q3 + 20Q4Q2 + 16Q2Q3 + 2Q4 , (6.37) 

we obtain 

2 2 4 5 
2N Z E(w w )p,S2 = 2p2S2(2 + Q2+4Q3)(Q2(.8Q3+8Q3) 

a= -2 * 

+ Q2(- 44Q3 - 46Q4+ 14Q3 + 16Q3) + Q ^ ( -  3 4 Q *  - 6Q4+16Q* ) + Q4(- 38Q2 

- 68Q3 - 17Q4+12Q3) + Q2(- 40Q2 - 26Q^ +12Q4)+ û|(- 11Q3 - 26Q2 

-13Q3+2Q4) + Q2(-16Q3-14Q2 + 2Q3) + Q®(- 1 - 3Q3 - 2û|) + Q|(- 2 

-2Q3) -16Q4 + 8Q3+8Q3)/36n2(l+Q3)(Q2 + 4Q3)(l -Q2-2Q3+Q2) . 

(6.38) 

Adding (6.38) to (6.34) and (6.35) yields 

2 2 3 
2NJ0 

EK,k™,-2,k>Se,a-2 = 2P2
So(2 + Q2+4Q3)  <°2<" 8Q3 + 8Q3> 
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+ Q2(-8Q3- 6Q2 + 2Q3) + Q|(- 10Q3 +2Q3) -Q^l +2Q3) - 2Q* - 16Q2 

+ 8Q3+8Q3)/36n2(l+Q3)(Q2 + 4Q3)fl -Q2-2Q3+Q3). #.39) 

Therefore, by virtue of {6.19)s collecting (6. 25), (6. 33) and (6.39) 

gives finally the variance formula 

"S ,s0+S0 [ 24Q2<Q3+Q3 -2Q34) + 1ZQ2f2Q3 +6Q3 * 3Q3 

- Q3) + 6Q2(3Q3+9Q3-2Q3) + 6Q2(1+2Q3+2Q3) + 3Q2(1+4Q3) + 48(2Q3 

- Q 3 - Q 3 )  + Pl(8Q2 (- 2Q3+Q3+4Q3 -3Q4) + 8Q|{- 2Q3+5Q3-3Q3) 

+ 2Q2(- 2 +5Q3 + I6Q3 - 3Q3) + 2Q2(- 2 + I7Q3 -3Q2) + 2Q2(1+3Q3) + 6Q2 ) 

+ (2 + Q2 + 4Q3 ) p 2 (8Q2 ( - Q2 + Q3 ) + 2Q2(- 4Q3 -3Q3+Q3) + 2Qg(- 50g 

+ Q2) + Q2( - 1 - 2Q3) - 2Q2 + 8(- 2Q2 + Q3 + Q4) ) ] /6n(l + C^KQ2 + 4^)-

(1 -Qg-ZOg+Qg) . (6.40) 

Because of the heavy algebraic calculations involved in arriving at 

(6.40), an independent check on its correctness was made. As a special 

case the populations on all occasions are assumed to be identical, so 

that p, = p_ * 1, and 6 , = 6 =0. The solution of the corre-r  1 r2 a, a-1 a, a-2 

spending difference equation analogous to (6.4) is then 

s+1 „ n s+1 
co 

x'' = Q, 2 
0 " s-0 

Q,+B Q -B 
( 4 — )  -  t - | — )  X _ G  /B . (6. 41) 

Directly from (6.41) we have that 
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Q 
1 

oo 
2 

Q +B S+1 Q -B s+l  

(-V-) Vfx.s) 

2Q1 oo 

-f 2 
B s=0 

Q.+B 
(A—) 

s+1 Q.-B 
-(-4-

s+1 

) 
Q.+B 

J-T-) 

s+2 

Q, - B s+2 

Cov(x_s>x_s_1) 

2Q. oo 
+ —f 2 

B s=0 

Q.+B 
(-V-) 

s+1 Q -B 
(-4-) 

s+1 Q.+B 

f-V-) 

s+3 

Q.-B 
- (-4—) 

s+3 

Cov(x_s,x_s_2) 

2Q, oo 

+ ~T 2 
B s=0 

Q2+B 
s+1 Q, -B 

(-4— ) 
s+1 

00 

S 
t=3 

Q.+B 
(-T-) 

s+l+t 

Now 

Q -B S+1+t 

- ) 1 Cov(x_s»x_s_ t)* (6.42) 

V(x-S> - (3^ - B ,so* Cov(x-s'x-s-i | l (9^ - S ,so-

s2 

c°v(x_Si ,s.2) = (^ - 5)Sg, Cov(x_s,x_s_ t)= - t2, t«3,4.5 

(6.43) 

Substitution of the values in (6.43) into (6.42) and considerable 

simplification gives 
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V K )  - ( ; - î j ) S 0 + S 0  [ Q Z < -  8 Q 3 + 2 4 Q 3  -  1 6 Q 3 >  +  Q 2 < "  4 Q 3 + 3 0 Q 3  

-2Q3) +  Û 2 ( - 2 +  2 2 0 ^ 4 0 3 )  +  1 4 Q 4  Q 3 + 4 Q 2 Q 3  +  2 Q 2 -  I 6 Q 3 + 2 4 Q 3  

- 8 Q 3  ] /3n(l + QgltQg + 4Q3XI - Q2 - 2Q3 + Q2). (6.44) 

It will be seen that on setting = 1, (6.40) reduces to (6.44), 

thereby providing at least a partial check on the accuracy of the 

calculations. 

As a second partial check we may set Q3 * 0 in x^' , thus reducing 

it to XQ . Equation (6.40) then becomes 

—  —  1 1 2  2  r  2  
V ( x 1 ' ) = V ( x ' )  =  ( - - S ) S 2  

+  S 2  [ Q 2  

2 2 

(- 2 - 2Q- +Q2 +3Q^) Q2(2+5Q,+2Q2) . 
+  P;Û2  T-* -p2-  r—- ] /-ti-of).  

(6.45) 

2 2 
The substitution of r = 3, m = 00, SQ = p^ SQ, « ^2^0 " l t° 

the general formula (3.13) produces the expression (6.45), thus 

providing the check. 

A second simple composite estimator is obtained from (6. 16) by 

setting = 0 , 

*0" = Ql*0 + Q3(*-2 + *0, -2 '  *-2,0> • l6- 461 

It explicitly ignores the estimate of change available from the units 

common to occasions 0 and -1, and is intuitively more appealing than 



158 

XQ when p2 >p^. Putting = 0 in (6.40) gives 

v<*o') = (è - B>S0 +S0<6 '2Q3 - °3 " Q3> + P2
(2 + 4Q

3H-2Q3 + Q3 

-h Q4)) /3nQ3(l + Q3){1 - 2Q3 + Q* ) . (6.47) 

B. Numerical Results 

A numerical investigation of the variance function V(XQ) given by 

(6.40) for various designated values of the coefficients Qj, Q., and 

and coefficients of correlation p^ and p^ was undertaken. Both 

and û2 were permitted to vary from 0.0 to 0.9 at intervals of 0.1 

with the restriction that < 0. 9 ; it is evident that one would 

never in practice set = 0. 0 and thereby completely ignore the 

information obtained from unmatched units on the current occasion. The 

correlation coefficients p^ and p^ were assigned the following nine 

selected pairs of values: (0.9,0.9), (0.9,0.8), (0.9,0.7), (0.8,0.9), 

(0.8,0.8), (0.8,0.7), (0.7,0.9), (0.7,0.8), (0.7,0.7). 

Since both S2 and the sample size are unspecified the relative 

efficiency, given by the variance of the simple current occasion mean 

expressed as a per cent of the variance of xjj1, was considered, i.e., 

V(x ) 
R.E-,, = (100)% . 

X0 V(xq) 

The finite population correction term, -S^/N, was ignored in both 

numerator and denominator since N is necessarily large with respect 

to n. Similar definitions and comments for the relative efficiency of 
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Xg over xQ and of x^11 over x^ also apply. 

Tables 13 to 21 present the results of the calculations for the nine 

pairs of (Pj* values specified above. They are somewhat abbrevi

ated here because values of greater than 0.6 did not give results of 

any particular interest. As an illustration of the use of the tables, from 

Table 14 the maximum gain in efficiency of XQ over x^ with = 0.9 

and p^ = 0. 8 is scored when = 0.5, = 0.1 and hence = 0.4, 

the gain being 47. 5% , 

Table 22 summarizes the approximate optimum values and 

of and which give the maximum increase in efficiency of x^ 

over XQ for each of the nine assumed correlation structures. Also 

tabulated are the approximate optimum and values using x^ 

and XQ 1 respectively. Finally the last two columns present the relative 

efficiency of x^1 with respect to x^ and x^" using the optimum Q 

values cited for each correlation situation. 
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Table 13. Relative efficiency in per cent of x" with respect to x_ 
with p ! = 0. 9, P2 

x  0. 9 

Q2 

Q3 0.0 0. 1 0.2 0.3 0.4 0.5 0.6 

0.0 100.0 112.4 125.3 137.6 147. 1 149.9 141.2 
0. 1 106.3 120. 9 136.2 150.6 161.0 161.8 146.4 
0.2 113.5 130.5 148.1 163.7 171. 8 163. 1 129.4 
0.3 122. 1 141.6 161.0 174.8 173.3 142. 2 78.9 
0.4 132.5 154.3 173.0 178.3 152. 2 85.8 
0.5 144. 5 167. 2 179. 2 159.5 92.4 
0.6 158. 2 176.4 164.7 98. 9 
0.7 169. 8 167.5 105.5 
0. 8 167. 2 111.9 
0.9 117.9 

Table 14. Relative efficiency in per cent of x'1 with respect to x 
with p = 0. 9, p^ * 0. 8 

Q2 

Q3 0.0 0. 1 0.2 0.3 0.4 0.5 0.6 

0.0 100. 0 110.3 118. 9 123. 8 122. 4 112.5 93.9 
0.1 106.3 118. 2 127.9 132.6 129.2 115.2 91.2 
0.2 113.3 126. 6 136.4 138.9 129.7 107. 1 74.0 
0.3 121. 2 135. 1 143.3 139.7 119.5 84. 0 53. 1 
0.4 130.0 143. 1 145.6 129.4 92. 9 45.5 
0.5 139. 1 147.5 137.0 101.3 49.7 
0.6 145.8 142.0 109. 2 54. 2 
0.7 144.5 116. 6 59. 1 
0. 8 122. 9 64.4 
0.9 70.2 
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Table 15. Relative efficiency in per cent of x'J with respect to xf i  

with p J = 0. 9, p^ e 0« 7 

JP
 

o
 

o
 

0.1 0.2 0.3 0.4 0.5 0.6 

0.0 100.0 108.2 113. 1 112.5 104. 8 90.0 70.3 
0.1 106.3 115. 5 120.5 118.3 107. 8 89.4 66. 3 
0.2 113.0 122. 7 126.3 120.5 104. 2 79.7 51. 8 
0.3 120.3 129.2 129.0 116.1 91.2 59.6 33.0 
0.4 127.7 133.5 125.5 101.4 66. 9 31. 0 
0.5 133.9 131.9 110.9 74. 2 34.0 
0.6 135.3 119.0 81.6 37.3 
0.7 125.6 89.4 41.0 
0.8 97. 1 45.2 
0.9 50.0 

Table 16. Relative efficiency in per cent of x'1 with respect to xn 

with pi « 0. 8, p^ = 0. 9 

Q3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

0.0 100. 0 112.4 125.3 137.6 147.1 149.9 141.2 
0. 1 105.5 119. 8 134.8 148.8 159.0 159.7 144.7 
0.2 111.5 127.9 144.5 159.5 166. 8 158.7 126. 6 
0.3 118.2 136.4 154.3 166. 9 165. 6 137. 2 77.3 
0.4 125.9 145.6 162.3 166.7 143.9 83.1 
0.5 134.4 153. 8 163.9 147.5 88.3 
0.6 142.7 157.5 148.6 92.9 
0.7 148.1 146.8 97. 1 
0. 8 142.0 100. 4 
0.9 102.6 
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Table 17. Relative efficiency in per cent of x'' with respect to xf i  

with p j * 0. 8, p£ * O. 8 

°2 

Q3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

0.0 100.0 110.3 118.9 123.8 122.4 112.5 93.9 
0.1 105.5 117. 1 126.6 131.2 127.9 114.0 90.6 
0.2 111.2 123.9 133.3 135.7 126.9 105.2 73.1 
0.3 117.4 130.4 137.9 134.6 115.7 82.2 40.9 
0.4 123.8 135.7 137.7 123.2 89.8 44.8 
0.5 129.5 137.0 127.9 96.3 48.5 
0.6 132.6 129.7 101. 8 52.4 
0.7 128. 5 106. 2 56.3 
0.8 108. 8 60. 4 
0.9 64.4 

Table 18. Relative efficiency in per cent of x" with respect to x„ 
with pi * 0.8, p^ = 0.7 

°2 

Q3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

0.0 100.0 108.2 113. 1 112.5 104.8 90.0 70.3 
0.1 105.4 114.5 119.3 117.4 106. 8 88.7 66. 0 
0.2 111.0 120.3 123.8 118.2 102.4 78.6 51.4 
0.3 116.6 125.0 124.7 112.6 89.0 58.7 27.8 
0.4 121.7 126.9 119.6 97.7 65.2 30.6 
0.5 125.0 123.5 104.8 71.5 33.5 
0.6 123. 8 110.3 77.5 36.4 
0.7 113.4 83.1 39.7 
0. 8 88. 1 43. 2 
0.9 47.0 
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Table 19. Relative efficiency in per cent of Xq with respect to 
*0 

with p i * °*7» P2 
: * 0 . 9  

CL 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

S  

0.0 100.0 112.4 125.3 137.6 147.1 149.9 141.2 
0.1 104.7 118. 8 133.3 147.3 157.0 157.7 143.1 
0.2 109.5 125.2 141.2 155.3 162.3 154.8 123.9 
0.3 114.7 131.6 148.1 160.0 158.5 132.3 75.7 
0.4 120.0 137.7 152.7 156.7 136.4 80.6 
0.5 125.5 142.5 151.3 137.2 84.5 
0.6 130.0 142.5 135.3 87.6 
0.7 131.4 130.7 89.8 
0.8 123.6 91.0 
0.9 90.7 

Table 20. Relative efficiency in per cent of XQ with respect to X0 
with pi = 0.7, p2< = 0.8 

Qo 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

°2 
J 

0.0 100.0 110.3 118.9 123. 8 122.4 112.5 93.9 
0.1 104.6 116. 0 125.3 129. 9 126. 6 113.0 89.9 
0.2 109.3 121.5 130.4 132.6 124.2 103.3 72.2 
0.3 113.9 126.1 133.0 129.9 112.2 80.4 40.5 
0.4 118.1 128.9 130.9 117.6 86. 8 44.0 
0.5 121.2 127.9 119.9 91.7 47.4 
0.6 121.5 119.3 95.4 50.6 
0.7 115.6 88.0 53.8 
0. 8 97.6 56.9 
0.9 59.6 
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Table 21. Relative efficiency in per cent of x'1 with respect to x„ 
with Pj = 0.7, p2 = 0. 7 

q
3 0.0 0. 1 0.2 0.3 0.4 0.5 0.6 

0.0 100. 0 108. 2 113, 1 112.5 104. 8 90.0 70.3 
0.1 104.6 113. 5 118.2 116.3 105.9 88.0 65.6 
0.2 109.1 117. 9 121.2 115.9 100.6 77.6 61.8 
0.3 113.1 120.9 120.6 109.3 86.9 57.7 27.6 
0.4 116.1 121.1 114.4 94.2 63.7 30.3 
0.5 117.2 116.0 99.4 69.0 32.9 
0.6 114.2 102.6 73.7 35.6 
0.7 103.3 71.6 38.4 
0.8 80.6 41.3 
0.9 44.3 

Table 22. Optimum choices of weight coefficients for XQ,XQ,XQ 1 and 

relative efficiences of XQ with respect to x^ and x^" in 

per cent 

xo 4) 
V1 1 1 

0 
Relative efficiency of XQ 

with respect to 

Pi p2 Q2 °3 °2 °3 X0 *0 ' 

0.5 105.4 119.4 
0.3 101.2 119.2 
0.2 100.0 119.5 
0.5 112.7 111.4 
0.3 104.0 111.5 
0.2 101.6 112.2 
0.5 123.5 108.3 
0.3 108.7 106.7 
0. 2 103.4 107.1 

0.9 
0.9 
0.9 
0 . 8  
0 . 8  
0 . 8  
0.7 
0.7 
0.7 

0. 9 
0. 8 
0.7 
0.9 
0. 8 
0.7 
0.9 
0. 8 
0.7 

0.5 
0.5 
0 . 6  
0.3 
0.3 
0.4 
0.2 
0.3 
0 . 2  

0. 2 
0 . 1  
0. 0 
0.3 
0 . 2  
0. 1 
0.4 
0. 2 
0. 2 

0.7 
0 .6  
0 . 6  
0.7 
0 . 6  
0.5 
0.7 
0 . 6  
0.5 
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C. Discussion of the Numerical Results 

The most important conclusion to be derived from the foregoing 

tables is the fact that moderate efficiency gains may be achieved through 

the use of a multi-component estimator rather than a simple composite 

estimator when p^> in a three visit one cycle rotation design. It is 

evident that x^' is at least as efficient as xQ, x^ and x^" under an 

optimum choice of the Q weight coefficients. From Table 22 it is 

noted that x^" is more efficient than x^ when p^ < p^ and less 

efficient when p^ 0 The optimum Q values and the corresponding 

relative efficiencies are only approximate since the interval of tabulation 

was 0.1 which is somewhat large. Thus the relative efficiency of 

100.0% quoted in the case p^ = 0. 9» p^ - O. 7 would no doubt be slightly 

greater since this is the minimum attainable value. The optimum values 

quoted are, however, rather robust for no appreciable efficiency 

differences occur in the neighbourhood of these values. The efficiency 

falls off very rapidly as the deviation from optimum values becomes 

more pronounced. This gives greater confidence in the conclusions 

drawn from Tables 13 to 22. In practice the true values of the corre

lation coefficients would not be exactly known so that the robustness 

property of the optimum Q's is indeed desirable. As would be 

expected, the optimum value of in the estimator x^1 decreases as 

P2 decreases for a given p^ . Similarly the optimum value of in 

the estimator x^" decreases as p^ decreases, this estimator's 

variance being independent of p^ . 

One would suspect that more spectacular efficiency gains might be 
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scored with a multi-component estimator in a rotation design with more 

than three visits. Even though x^' explicitly takes advantage of the fact 

that — Pi » there is only a one-third sample overlap between 

occasions 0 and -2 in the particular design situation investigated. 

The results of Chapter III have indicated that a fifty per cent overlap is 

close to optimum for XQ, and therefore a somewhat larger match 

between the more highly correlated occasions is indicated. 

A multi-component estimator of the change of level between the 

previous and current occasions, given by 

djj1 = Xg' - x^'i , (6.48) 

should also be a successful alternative to d^ = XQ - x1 ^ when Pg2 Pi • 

No attempt was made at deriving the variance of (6, 48) however, 

D. An Alternative Generalized Composite Estimator 

By solving a second order difference equation it was possible, as 

shown in A of this chapter, to readily express the estimator XQ in 

terms of the observations Xq ^ and to therefore obtain V(x^ ). It was 

noted that with more general designs the solution of higher order 

difference equations with unspecified coefficients is required. The 

method proposed is therefore lacking somewhat in generality. The form 

of the estimator XQ can be modified to obtain an alternative estimator 
A 
XQ which will still exploit the correlation structure between units 

A 
separated by more than one time interval. The variance of XQ is more 

easily obtained but the simplification is at the expense of some loss in 
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precision over the use of x^' . The alternative generalized composite 

estimator XQ is of the same structure as the improved C. P. S. - type 

generalized composite estimator (5.8). It is the purpose of this section 
A 

to both derive the variance of x^ and to make some evaluation of the 

efficiency loss in using this estimator rather than XQ . This comparison 

has implications concerning the improved C.P. S, - type estimator as 

well, as already mentioned in Chapter V. 

The alternative estimator is 

A 
x' Q = oxjj + (1 - 6)x^" , (6.49) 

where x^ = Q^x^ +xo -1 " X-1 0^ + ^ " ^l^x0 ' (6.50) 

xô" K Q2^X-2 + X0, -2 ™ X-2, 0* + ^ " Q2^X0 * (6.51) 

0 < Qx, Q2, ô < 1 . 

The sample design assumed is a three visit one cycle pattern with 

correlations and p^ for units separated by one and two time 
A 

intervals respectively. The derivation of V(x^) is in the same spirit as 

that of (5. 8) and is therefore abbreviated here. Now 

V(x^) = ô2V(xj)) + (1 - ô)2V(x|)") + 2 6(1 - 6)CovXx|),^" ). (6.52) 

By setting 

_ -oo N _ -oo N 
xL = 2 S w . x , x'" = 2 S v . x , 

0 a=0 k=l a»k a»k 0 
Q*o k=l 0-1 a* 

it will be seen that the weights w^ ^ and Vq ^ are as given in Table 23. 
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Table 23. Weights w and v . for the estimators x' and x l"  
a, k a, k 0 0 

Estimator Occasion 
Visit 

number 
W eight 

0 1 (1 - Qj)/n 

2,3 (2 + Q1)/2n 

a < 0 1 - Q~a(l + 2Q1)/2n 

2 - Qp{l - Q1)/2n 

3 Q~a(2 + Q1)/2n 

0 1.2 (1 - Q2)/n 

3 (1 + 2Q2)/n 

2a 1 - Q~?
a(2 + QJ/n 

(a « -1, -2, ... ) 6 C, 

2 

3 Q"a(l + 2Q2)/n 

2a + 1 1, 2,3 0 I i ii 

It is then a straightforward exercise to derive 

V ( 4 >  =  " 4 ) s o  +  Q j S ^ Q j t  +  Q j )  -  2 p 1 ( 2  +  Z Q 1 - Q f - 3 Q  

- p2Q1{l+2Q1)(2 + Q1))/6n(l-Qj), (6.53) 
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V(x.'') = (^ - 5j)S2 + 2Q2(2 + Q2)SQ(3Q2 - P2(1 + 2Q2) )/3n(l - Q2 ). (6. 54) 

COV(XQ *XQ") IS evaluated with the aid of (5. 17). The final result is 

Cov(x^ ,x ' 0 ")  = (^ -±)S2+S2 [ 30^(1 +Q1+2Q2 + 2Q1Q2)+p1{-2Q1 

-al+3QlQz{l+Q1)-Q1 Q2(l + 2Qj) ) - p2(Q2 (2 + 0^(2+0^ 

+ Q2(l+20^(1+2Q2)) ] /6n(l-Q2Q2). (6.55) 

The usual checks involving a direct evaluation when x = x. . ° a,k 0,k 

were made on (6.53), (6.54) and (6.55) but are not reproduced here. 

Hence, by virtue of (6.52), 

V(x^) « (^ - 5j)S2 + 62Q1S2(3Q1(2iQ1) - 2p1(2 + 2Q1-Q2 - 3 Q \ )  

-p2Q1(l+2Q1)(2 + Q1))/6n(l-Q2) + 2(l-5)2Q2(2+Q2)S2(3Q2-p2(l+2Q2)) 

/3n(l -Q2)+ Ô(1-Ô)S2 [ 3Q1Q2(l+Q1+2Q2+2Q1Q2)+p1(-2Q1-Q2 

+ 3Q 1  Q2(l +Qj) - Qj Q2(l + 20^ ) - P2(Q2(2 + Qj)(2 + Q2) + Q2(1 +2Qj) 

(1+2Q2))] /3n(l - Q2 Q2). (6.56) 

In order to reduce the calculating burden with (6. 56) the approx

imate optimum values of and which minimize V(x^) and 

V(XQ 1 ) were taken from Table 22. It appeared to be a more or less 

reasonable assumption that these would also be the approximate 

optimum values in (6.56) since (6.55) is considerably less than 

either (6.54) or (6.53). A numerical study was then undertaken to 
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determine the approximate optimum 6 values for the nine pairs of p^ 

and p2 values. The results of this study are summarized in Table 24, 
A A * 

where the approximate optimum values and ô are displayed 
•» _ 

together with the relative efficiency of x^ with respect to XQ as an 

estimator of XQ. The approximate optimum relative efficiency of XQ" 

with respect to XQ is also recorded to facilitate a comparison. 

* _ 

It is evident that although XQ is less efficient than XQ, the loss 
* 

incurred is small. Hence V(XQ) would be expected to serve as a good 

conservative approximation to V(XQ ). That XQ is recorded as being 
A 

less efficient than XQ when p^ = 0. 9 and p^ * 0. 7 is due to the fact 
A A * 

that the optimum weights and ô are only approximate. In this 
» 

particular instance the optimum was estimated to be * 0 for 

XQ which undoubtedly yields an ultraconservative estimate of the 

relative efficiency of XQ . Although no indication is given in Table 24, 
A 

V(XQ) was observed to be stable about the approximate optimum ô 

value. 

The foregoing study led us to deduce that the generalized composite 

estimator (5.8) would generate estimates almost as precise as those 

of the multi-component estimator (5.23) under an optimum choice of 

parameter values in the C. P. S. design situation. In practice one would 

prefer (6.2) to (6.49) both because of the slight precision gain and 

because the former requires a choice of two parameter values versus 

the three selections for the latter. Whilst the variance function of 

(6.49) is known and that of (6. 2) is not known in more complex 

rotation designs, the possibility of short-cut methods of variance 
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estimation in multi-stage designs obviates this advantage of a generalized 

composite estimator over a multi-component estimator. 

* _ 

Table 24. Relative efficiency in per cent of XQ and x^' with respect 

to XQ at the approximate optimum Q^> ô values for 

selected (p^, p^) combinations 

Relative efficiency Relative efficiency 

0. 9 0.9 0.7 0.5 0.7 173.7 179.2 

0. 9 0. 8 0.6 0.3 0. 9 145. 9 147.5 

0. 9 0.7 0.6 0.2 0. 9 135. 8 135.3 

0. 8 0.9 0.7 0.5 0. 5 163.5 166.9 

0. 8 0. 8 0.6 0.3 0.6 136. 5 137.9 

0. 8 0.7 0.5 0.2 0. 8 125.6 126.9 

0.7 0. 9 0.7 0.5 0.3 158. 2 162.3 

0.7 0.8 0.6 0.3 0. 5 131.4 133.0 

0.7 0.7 0.5 0.2 0.6 120.7 121.2 
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VII. SUMMARY AND RECOMMENDATIONS 

It is apparent that composite estimation techniques used in con

junction with rotation sample designs can be an extremely powerful 

method for extracting information over time from a dynamic population. 

Such considerations as the increased precision of estimates, reduction 

in costs, control of nonsampling errors, and administrative convenience 

among others are attractive to the sampling statistician, the economist, 

the social scientist or indeed anyone who has reason to make inferences 

concerning some changing population. Attention has primarily been 

devoted in this dissertation to the first of these factors. 

The criterion for selecting the appropriate sample design and esti

mator for any one characteristic has been that combination which gives 

minimum variance in the estimate compared with selected alternative 

designs and estimators. In practice the optimae so decided upon would 

be modified in light of the other considerations mentioned above. Other 

circumstances such as the collection of information on a wide variety of 

characters will often conflict with one another. The statistician is then 

forced to make some compromise which will satisfactorily meet all 

needs. 

A unified approach to the problem of sampling on successive 

occasions with a fixed rotation design in a finite population has been 

developed here. This was accomplished by considering the finite popu

lation to be comprised of the Ni possible rotation patterns that can be 

constructed in the population of size N. The population is assumed 

fixed from occasion to occasion with no units either immigrating or 
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migrating. The sample then consists of one rotation pattern selected at 

random from this population. The infinite cycle rotation pattern is 

formulated by permitting a rotation group of n^ units to remain in the 

sample for r > 2 occasions, to withdraw for the next m occasions, to 

return for another r consecutive occasions, and so on without limit. 

There is no difficulty if the rotation pattern is superimposed on a 

subpopulation of N* units randomly selected without replacement from 

the N population units. 

In Chapter HI the simple composite estimator 

x0 * Q(xLi + xo, -1 ** X-l, 0^ + t1 " Q)xo (7.1) 

of the current occasion population mean, , is considered. If sampling 

was instituted on occasion - u < 0, then x^ may be written as 

= £ kE v»-* • t7-2)  

For purposes of variance evaluation it is assumed that u is large so 

that XQ is essentially given by 

_ -co N 

= afokfl^k^k • (7'3> 

where x , is the value associated with the k-th unit on the a-th 
a, k 

occasion and the w^ ̂  are rotation weight variables. The exact 

variance of (7. 3) in the finite population of size N is then developed in 

general and under the assumption of a stationary covariance structure 

with an exponential correlation model. The simple composite estimator 
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of the change in level between the previous and current occasions is 

d0 = *0 "*-1 • (7'4) 

The variance of this estimator is derived as well. A generalized 

variance criterion is suggested as a possible solution to the problem of 

selecting a single Q which is best for (7.1) and (7.4) simultaneously. 

A brief section on variance estimation is presented as well. 

The theory of sampling on successive occasions is extended in 

Chapter IV to include two-stage designs where either primary or 

secondary sampling units are rotated. Composite ratio estimators are 

introduced and their application in estimating the mean per secondary 

sampling unit in a two-stage sample design is illustrated. 

In Chapter V mention is made of the I cycle rotation design wherein 

a rotation group performs a total of I cycles of r visits each before 

dropping out of the sample forever. The Current Population Survey 

conducted monthly by the U.S. Bureau of the Census employs a two cycle 

rotation design. A rotation group remains in the sample for four 

consecutive months, drops out for the next eight months, returns for 

another four months and then withdraws forever. Under the correlation 

model 

Pjj = P j P^ * (is 1»2, ...,11; j = l»2, 3, ...,) 

which exhibits possibly large year-to-year correlations, the variance of 

the composite estimator x^ is derived. An improved "generalized 

composite estimator" 
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xj, = ôxjj + U - 6)x ' 0 "  , (7.5) 

where 

xo" =  Q2^X-12 +  X0,-12 " X-12, 0^ +  ^ " Q2^X0 '  

which explicitly exploits any high year-to-year correlations, is intro

duced and its variance is given. 

A "multi-component estimator" of the structure 

x0 = Q1 X0 + Q2^X-1 + x0, -1 " X-l, 0^ + Q3^X-2 + X0, -2 " X-2, 0^ 

is applied in the special case of a three visit one cycle rotation design in 

Chapter VI. The correlations p^ and p^ between measurements on the 

same unit one and two occasions apart are unspecified. The solution of 

a second order difference equation is involved in the process of 

expressing XQ in a form such as (7.3) in order to arrive finally at 

V(XQ). The generalized composite estimator analogous to (7.5) is 

compared in efficiency with x^ . Inference is then made concerning the 

increase in efficiency that might be anticipated in employing a multi-
A 

component estimator rather than x^ in the important C.P. S. sampling 

situation. 

Due to the complexity of the variance functions arising from the 

different designs and estimators, recourse was made to a numerical 

exploration of these relationships in order to determine approximate 

optimum values of the design and estimator parameters. Some of the 

more significant conclusions reached were: 

(a) The optimum rotation pattern for the estimation of the current 
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occasion mean with a simple composite estimator is a two visit 

infinite cycle design. As anticipated, the optimum value of Q 

in XQ is proportional to the correlation p existing between 

consecutive observations on the same units. Moderate efficiency 

gains over XQ are resultant under a choice of Q which is at 

least near to the optimum value. 

(b) The optimum design corresponding to the composite estimator of 

change, x^ - x1 ^ , would be a fixed panel when an efficiency 

comparison with the difference of sample means obtained from 

independent sample draws on occasions 0 and -1 is made. But 

when xq ~ x' x i-s paralleled with the difference in arithmetic 

means as calculated from the same rotation design, a two visit 

design again becomes superior. Important efficiency gains are 

registered in either case when p is not small. The optimum 

values of the weight coefficients Q are larger for the composite 

estimator of change than for the composite estimator of level. 

The generalized variance criterion for simultaneous optimization 

in the latter comparison yields a value of Q midway between the 

individual optimae. 

(c) A simple composite estimator employed in a monthly rotation 

design does not utilize to any appreciable extent the high year-to-

year correlations that are frequently encountered in surveys of an 

economic nature. In such cases a generalized composite esti

mator and consequently a multi-component estimator could 

introduce important efficiency gains in resultant estimates. 
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The foregoing list is by no means exhaustive; a more extensive 

coverage has already been presented in the main text. 

There is room for a considerable amount of additional research in 

the area of rotation sampling. The variance formulas appropriate to 
-a 

(a) the estimated average level over several occasions, 2 x' , /(a + 1) 
a*0 *=* 

and to (b) the change in level x^ - x' between non-successive oc

casions, have not been developed. The methodology of this dissertation 

could be extended to cover these two cases although a great deal of 

algebraic simplification would be entailed in arriving at the final results. 

The behavior of the different variance functions under correlation models 

other than the exponential and arithmetic would be worthwhile looking 

into for the purpose of studying robustness properties. One such 

possibility would arise by considering a population composed of a mix

ture of two groups of units; the first group exhibiting a fast exponential 

decay and the second a slow exponential decay. A mixture of exponential 

models of the type Q+t = c^p* + c^p* might then be expected to hold 

in the population as a whole. 

The generalized variance criterion has some undesirable properties 

and may well be felt to not be fully satisfactory as a solution to the 

problem of estimating both level and change or other parameters jointly. 

The utilization of non-linear programming techniques may yield more 

convincing results. The possibility of introducing improved composite 

estimators following the lead of Chapters V and VI should be pursued in 

earnest for the rewards can indeed be great as we have already seen. 

Nor have we examined the reduction in variance that might be effected 
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through the introduction of either generalized composite estimators or 

multi-component estimators of population parameters other than level. 

Multi-level rotation sampling was outside the scope of this study. It 

is possible that the rotation weight variable technique may be applied in 

this area as well; Eckler (1955) has already shown the relationship 

between one-level and two-level rotation sampling. 

The important factor of cost was ignored in the treatment of rotation 

designs and composite estimators; it was thus implicitly assumed that 

no difference in cost was attached to the sampling of new versus matched 

units on any occasion. Reference has already been made to the fact that 

the cost of matched units in the sampling of human populations tends to 

be smaller than that of new units, Cochran (1963). The situation is 

reversed in, e.g., forest inventory surveys, Ware and Cunia (1962). 

One would suspect that the r - 2 optimum design would be altered with 

the introduction of cost functions exhibiting differential costs. 

Little, if any, research has been conducted on the problem of 

sampling on successive occasions from a moving population. It was 

assumed that no units moved into or out of the population P although the 

value of a character associated with the units did vary over time. In 

many types of surveys, e.g., area samples, this is a realistic 

assumption. Some populations are characterized, however, by signifi

cant growth or decline in numbers. Examples are the number of homes 

in the fringe areas of a city versus the membership in the coal miners 

union over the past fifteen years. Two papers that could possibly be 

somewhat relevant are by Das (1951) and Seal (1962). Das describes a 
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two-phase sampling procedure which can be applied to a population P 

having some subpopulation P* whose frame is unknown and for which an 

estimate of the P* mean is required, A sample of size n is selected 

from P and it is observed that n^ of these belong to P*a In the 

second phase a sample of predetermined size r^ is selected from the 

n^ units if r^<n^;if r^_>n^ then all n^ units are investigated. 

Thus a sample of size r = r^ or r = n^ has been drawn from P*. 

Then X, the population total of P*, is unbiasedly estimated by 

* r 
X = Nn. 2 z./rn where N is the size of the original population and the 

1 i*l 1 

z^ are the observed sample values. Seal discusses the problem of 

stratified sampling from a moving population where the sample frame is 

not up-to-date. A sample drawn at time t < 0 would therefore produce 

biased estimates of a population total YQ at time t = 0. A simple birth 

and death process is assumed for the number N(t ) of population units 

actually in existence at time t. It is further assumed that an additional 

sample frame referring to an earlier (or later) time point is also 

available. On the basis of these two frames the unknown parameters of 

the stochastic process are estimated. Such a probabilistic approach 

might well lead to a satisfactory solution of the moving population 

dilemma. It remains, however, to be explored. 
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X. APPENDICES 

A. Variance of the Composite Estimator of the Current Occasion 
Mean With a Geometric Trend in S 

a 

In the derivation of (3. 16} it was assumed that 5^ - SQ , 

a = -1, -2,.... We now generalize this condition by assuming that 

the re  i s  a  geomet r i c  t r end  in  S q ,  

If the covariance structure is assumed stationary over time in the sense 

that 

5 ^ = P_ t S  S  ^  .  
a, a+t a a+t 

it then follows that 

a+t = <"/k)"tk2aS0 " 

The substitution of these values into (3.13) and an extremely lengthly 

simplification will finally lead to 

V ( XQ )  =  - ^ ) SQ +B [ (r-l)(C+Qrpr"1E + Qm+rpm+rI)/k3 

+ (r - l)Qmpm+1G/k2 + (Qrpr_1F + Qmpm+1H)/k3 

+ (D + Qm+r
P

m+rJ)/k2 ] , 

where 

B = (2Q/k)/r2(r-l)2n2(l-(Q/k)2)(l-(Qp/k)r+m)(l-Qp/k)2, 

C « -(r-l)k3p +r(k2 + l)k2Q/2-2k3Qp+rk2Qp2 + (k2-l)rQ3p2/2 , 
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D = rkQ2 - ('(r2 - r + l)k2+ r) Q2 p+rkQ2 p2 , 

E = rk2 p - kp2+ rQ2 p - kQ2 p2 , 

F = - kr2 Q + (rk2 + r)Qp - k(r2 - 2r -f- 2)Qp2 , 

G = (r - l)k2 - (r - 2)k2 Q - rkQp - (k2 + r)Q2 + 2rkQ2 p , 

H = - rkQ3+r(k2+r)Q3 p - r2 kQ3 p2 , 

I = - k^ r + k3 p + rk2 (k2 + 1 )Q/2 + k3 (r - 2)Qp - rkQ3 p 

+ (k2 + l)rQ3p2/2 , 

J = kr2 Q2 - (r2+rk2 (r - 1)+k2 )Q2 p+rkQ2 p2 . 

Upon setting k = 1 the foregoing expression reduced to (3.16) 

which is a check on the correctness of the lengthly calculations involved 

in the derivation. 

B. Rotation Designs With m < r 

The multi-cycle rotation designs developed in the text have all been 

constructed such that any rotation group drops out of the sample for 

m _> r consecutive occasions where r is the number of consecutive 

occasions it remains in the sample. There is no a priori reason that 

m should not be less than r however, as, for example, when rotating 

secondaries within small primary sampling units. The evaluation of 

the variance function of a composite estimator becomes exceedingly 

more complex when m < r and for this reason discussion of such 

cases was avoided. 

Reference here will be made only to an infinite cycle rotation design 
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and the simple composite estimator of the current occasion mean. The 

general variance formula (3. 12) is again applied to obtain the variance 

of XQ . The system of rotation weight variables specified in (3.5) and 

(3.6) are still applicable here# their value being independent of m. 

The main source of difficulty in the m < r sampling situation arises in 
-oo 

the evaluation of the component 2 NE(w , w , , )S , in (3.12). 
a)iai a»K a , k a, a 
=0 

It is not intended to give a term by term derivation of the general 

variance function, V(x^ ), here. Perhaps the most efficient procedure 

is to set up a rectangular array with the occasion serving as abscissa 

and visit number of the rotation group as ordinate, (see Figure 1). The 

various complexities introduced when m < r will then become visually 

evident. Four different cases may be distinguished: (a) r - m _> 4 , 

(b) r - m = 3 , (c) r - m = 2, (d) r - m = 1 . Only the corresponding 

variance formulas are quoted here. They are derived by referring to 

(3. 5) and (3.6) and the rectangular array which is not reproduced 

here. 

For brevity let (1) -£(r+m) be denoted by z, (2) 2 by 
1*0 

Z , (3) 2 Qi(r+m) by Z , and (4) 2 Q"2a by Q. . The finite 
U 1=1 a= -1 

population correction, -S2/N, is deleted from the following equations. 

(a) The case r - m _> 4. 

V(XQ ) = S2/n + Q2n^S2/(nn^) + n^(O2 + 2n^ Q/n^ + 1)S2 /(nn^) 
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+ 2Z
1 

n2Qtn2 + Qnl^S0, z^nnl * 

m p 77 
- ZZQ 2 Q n2 (nj+n2Q)(tQ + r-t)SQ^ z_t/(n ) 

+ 2ZQn2 Qm+1 (-(r+m)Q2 

+ ( - r2 + r - rm + 2m)Q + m(r - 1) z-m-l^n^nl ̂  

r~^ 3 t 2 
+ 2Zn 2 n, Q {-(r+m)Q 

t-m+2 

+ (r (1 - m) + 2m)Q + m(r - 1))SQ (n2n2 ) 

m+r-1 3 . 2 

+ 2Z 2 n_ Q ({t - r - m)Q + ( (t - m + 2)r + 2(m - t) ) Q 
t=r 

+ r2 + r (m - t - 1 ) +t - m) z_t/(n2 n2 ) 

- 2Z0 Q1 £ Qt 4 l1 - Q>2 S
a, a+z.t""24 > 

+ 2Z qQ1 Qm+in2(-(r+m+l)Q2 

+ (" r2 + 2r + 2m + 1)Q - {r+m))S^ a+z_m_1/(n2n2) 

- 2Z0 Q1 , =' Qt <r +m>4 t1 - Q>2 Sa, a+z-t'l"2 4 1 

t=m+2 

+ 2ZqQ1 Qr_1n2{-Q2 (r+m) 

+ Q(2r + 2m-r2) - (r +m) ) Q+Z_r+1 /(n2 n2 ) 
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r  " fu i  -1  .  o  o  7  7  
_ 2Z Q, 2 (1 _ O)2 (r +m - t)S ^_/(n n2 ) 

t=r 

+ 2Zj Qj n2 (Q2 + 2n2Q/ni + DS^ ̂ /(nn,) . 

(b) The case r - m = 3 . 

By deleting the fourth from last term from the previous formula, 

the appropriate variance is given. 

__ (c) The case r - m * 2 . 

V(XQ) = S2/n + Q2n2S2/(nn1) + Qj n2(Q2 + 2n^ Q/^ + l)S2/(nn^) 

+ 2Zj I^Q^ + QIIJJSQ J(nn2 ) 

m t 2 2 2 
- 2=0 ^ G + ^L) 

t— 1 

+ 2ZQn2 Qm+1 (-(r+m)Q2 

+ ( - r2 + r - rm + 2m)Q + m(r - 1) ) Sn , /(n2 nf ) 
uj z-m-1 i 

m+r-l ^ ? 

+ 2Z 2 4 Q ((t-r -m)Q 
t=r 

+ ( ( t - m + 2)r + 2(m - t) ) Q + r2 + r(m - t - 1) 

+ t-m)S0,z-t/(n2nl) 

_ 2 Z  -  -  - 2 -  -  2  2  
X)Ol "1> 
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- 4Z0 Q1 °m+1 n2(n2 Q + »l)(n2 + Qnl> sa, a+z-m-1 nl1 

" 2Z0Q1 r+2 lQt4'1-Q)2(r+m-t»Sa>a+s-t/fn2nl' t=r 

+ 2ZX Q1 n2(Q2 + 2n2Q/ni + l)SQjQ+z/(nni) . 

(d) The case r - m = 1 . 

V(XQ) « S2/n + Q2n2SQ/(nn1) + Q1n2(Q2 + 2n2Q/n1 + l)S^/(nn1) 

2 m t 2 
+ 2Zj n2 Q(n2 +Qnj)S0 ^/(nn^ ) - 2Zq 2 Q n2 (n^ +n2 Q)(tQ + r - t) 

S0, z-t^n nl^ + 2Z0n2Q ^ " Q^n2Q + nl^S0, z-m-l^n nl^ 

m+r-1 t 3 2 ? 

+  2 Z  2  Q n  ( ( t - r - m ) Q  +  ( ( t  -  m  +  2 ) r  +  2 ( m  -  t )  ) û  +  r  
U t=r+l & 

2 2 m-1 2 f 2 
+  r ( m - t - l ) + t - m ) S 0  z _ t / ( n  n j )  +  2 ZQQ1 2 n2 Q (1 - Q) ((m + t)n2 

" nl^Sa, a+z-t^n ni) + 2Z
0

QiQ n2(n2Q+n1)(n2 + Qn1) 

Sa,a+z-t/(n2nl) " 2Z0n2(n2+Qn1)(n1+n2Q)Q1Qm+1 

- ^0^1 ̂ /Q'n|(l_Q)2<r+rn_t) 
* t=r+l 

Sa, a+,-,/'n24»2Zl Q1 ̂  + 2n2 Q/nl + 1)Sa, • 


