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ABSTRACT 

Texas (T) cytoplasm maize (Zea mays L.) is a model system for studying cytoplasmic 

male sterility and fertility restoration.  The mitochondrial gene responsible for male sterility 

is T-urf13.  Fertility is restored to T cytoplasm maize by the combined action of two nuclear 

genes, Rf1 and Rf2a.   Rf1 is associated with the accumulation of additional 1.6/0.6 kb T-

urf13 transcripts while Rf2a is an aldehyde dehydrogenase and not involved in transcript 

accumulation.  There are also partial restorers of fertility for T cytoplasm.  Rf8 and Rf*, with 

the combined action of Rf2a, restore partial fertility and are associated with the accumulation 

of additional 1.42/0.42- and 1.4/0.4-kb T-urf13 transcripts, respectively.  Rf8 was positioned 

on the long arm of chromosome 2 near white pollen (whp1) using a segregating backcross 

population.  PCR markers were developed to map Rf8.  Flanking PCR markers that span a 

physical distance of 4.56 Mb in the B73 maize genome sequence correspond to a genetic 

distance of 8.28 ± 3.25 cM.  This region includes seven pentatricopeptide repeat genes.  

Partially male-fertile plants segregated for the presence or absence of the Rf8-associated 

transcripts, indicating that presence of the 1.42/0.42-kb transcript is not necessary for anther 

exertion.  Fertility phenotypes decreased with successive generations of backcrossing to (N) 

W64A, where as re-introducing the (N) wx1-m8 background increased fertility.  The day 

after planting to the first flowering was observed for partially fertile and mostly fertile plants.  

Mostly male-fertile plants flowered 2.7 to 3.4 days earlier than partially male-fertile plants.  

These results demonstrate the flanking region rf8 is located in and the possibility that male 

fertility is under the control of more than one nuclear locus. 
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CHAPTER 1. GENERAL INTRODUCTION 

Thesis Organization 

The main emphasis of this thesis is the genetic mapping of a partial restorer of fertility, 

Rf8, for Texas (T) cytoplasm maize.  A review of T cytoplasm is presented in the first chapter.  

Topics included are the historical significance of T cytoplasm, the cytoplasmic male sterility 

(CMS) phenotype, sensitivity to host-selective toxins produced by Cochliobolus heterostrophus 

and Mycosphaerella zeae-maydis, the characteristics of T-urf13 and its encoded URF13 protein, 

fertility restoration, and proposed mechanisms for CMS.  Chapter 2 is a part of a paper to be 

submitted to The Plant Genome later this year, in combination with an rf8/rf* linkage test 

performed previously by Deqing Pei.  This paper describes the fine mapping of Rf8 as well as 

fertility observations for Rf8 plants.  Last is a general conclusions chapter that describes the 

implications of this work and future experiments. 

Literature Review 

Introduction 

Cytoplasmic male sterility (CMS) is the maternally inherited inability to produce 

functional pollen.  Female fertility is unaffected.  CMS is found in over 150 species (Laser and 

Lersten 1972; Wise and Pring 2002).  There are three different major types of CMS in maize 

(Zea mays L.): Texas (T), USDA (S) and Charrua (C) (Beckett 1971).   Nuclear genes can 

suppress the CMS phenotype and restore male fertility.  T and C cytoplasms are characterized by 

sporophytic restoration, while S cytoplasm is characterized by gametophytic restoration.  

Sporophytic restoration means that all the male gametes (pollen) produced by a heterozygous 

individual for the restorer gene, regardless of the allele they carry, will be able to successfully 

fertilize the female gamete (ear).  The restoration occurs at the diploid (sporophyte) level.  
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Gametophytic restoration means only the male gametes that carry the restorer allele will be able 

to successfully fertilize the female gamete because restoration is occurring at the haploid 

(gametophyte) level.  CMS was recognized for its potential in producing hybrid seed in the 

1950s (Duvick 1965).  T cytoplasm became a successful way to produce hybrid seed in the 

1950s and 1960s.  However, T cytoplasm fell completely out of use because of significant crop 

loss during the southern corn leaf blight epidemic of 1970 (Pring and Lonsdale 1989; Ullstrup 

1972).   

T cytoplasm maize is highly susceptible to the host-selective T toxin of Cochliobolus 

heterostrophus (asexual stage Bipolaris maydis), the causal agent of southern corn leaf blight 

(Mercado and Lantican 1961). The mitochondrial gene, T-urf13, is responsible for male sterility 

and sensitivity to T toxin (Dewey et al. 1988; Wise et al. 1987).  T cytoplasm maize is also 

highly susceptible to the PM toxin of Mycosphaerella zeae-maydis (asexual stage Phyllosticta 

maydis), the causal agent of yellow corn leaf blight (Scheifele and Nelson 1969; Scheifele et al. 

1969).  T cytoplasm plants restored to fertility are just as susceptible as nonrestored plants 

(Villareal and Lantican 1965).  Losses from the 1970 epidemic were estimated at 700 million 

bushels (Ullstrup 1972).  Since this epidemic, T cytoplasm has not been used for hybrid seed 

production. 

Phenotype of CMS 

The phenotype of T cytoplasm maize is dramatic.  In normal cytoplasm, plump yellow 

anthers exert from the florets and pollen is shed.  In T cytoplasm, the florets stay tightly closed 

and few anthers exert, if any.  If exertion does occur, the anther is almost always brown and 

shriveled.  There is no pollen shed in T cytoplasm plants and female fertility is not affected. 
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The tapetum is the inner most layer of cells around the locule which houses the 

developing microspores.  This layer has more than one function.  It provides the microspores 

with nutrients, it releases the microspores from the callose wall, and it produces the precursors 

for the development of the outer pollen wall (exine) (Bedinger 1992).  As the exine develops, the 

tapetum undergoes programmed cell death that leads to the release of nutrients necessary for 

pollen development.  Timing of the degradation is critical.  Disruption usually leads to sterility. 

In a normal cytoplasm, the microsporocytes are enclosed in a callose wall in the 

developing anther.  During the meiocyte stage, the tapetal cells are undergoing mitosis without 

cytokinesis to become binucleate (Horner et al. 1993).  The microsporocytes undergo two 

meiotic divisions to produce a tetrad of four microspores.  The callose wall then degrades and the 

exine begins to develop.  During the growth of the microspores, small vacuoles are present 

which merge into a single large vacuole.  Asymmetrical division occurs producing a generative 

cell and a tube cell.  The generative cell divides again producing two sperm cells.  The tapetum 

begins to degrade giving off nutrients the pollen grains stores.  The pollen then begins to 

dehydrate to prepare for dehiscence. 

In T cytoplasm, the tapetum begins to enlarge and develop vacuoles as early as the tetrad 

stage (Warmke and Lee 1977; Yang 1989).  The tapetum degradation is preceded by 

mitochondrial dysfunction.  The mitochondria swell and become disorganized (Gengenbach et 

al. 1973; Warmke and Lee 1977; Watrud et al. 1975).  Tapetal swelling causes the microspores 

to abort and the pollen stage is never reached.  

CMS-associated tapetal degradation is not unique to maize.   Tapetum degradation has 

been observed in other species including CMS radish (Raphanus sativus) (Liu et al. 2009), 

pigeonpea (Cajanus cajan L. Millspaugh) (Dalvi et al. 2008), pepper (Capsicum annuum L.) 
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(Luo et al. 2006), and sunflower (Helianthus annuus) (Zhang et al. 2010).  In these species, the 

tapetum degenerates prematurely causing the death of the microspores.  The tapetal degradation 

of CMS radish is characterized by numerous vacuoles in the tapetum similar to maize (Liu et al. 

2009).  CMS pigeonpea and sunflower are characterized by degeneration of the tapetum at the 

tetrad stage (Dalvi et al. 2008; Zhang et al. 2010).  CMS pepper is slightly different than maize, 

radish, and pigeonpea.  The tapetum degrades later at the uninuclete pollen stage instead of the 

tetrad stage (Luo et al. 2006).   Because the tapetal layer is critical to pollen development, any 

disruption will cause sterility in a variety of species. 

Restorer of fertility genes for T cytoplasm 

CMS was first observed by Rhoades (1931).  Restoration of fertility in T cytoplasm was 

initially thought to be controlled by one dominant gene (Edwardson 1955).  However after 

crossing five fertility restoring lines (Ky21, K55, BH2, F5DD1 and WG3) to (T) Wf9, it was 

discovered that complete fertility is restored by the combined action of two dominant genes, Rf1 

and Rf2 (Duvick 1956).  Rf2 is present in many inbred lines (Dill et al. 1997).  Rf1and Rf2 are 

located on chromosomes 3 and 9, respectively (Duvick et al. 1961; Synder and Duvick 1969).  

Rf2a was the first restorer of fertility gene cloned from any species (Cui et al. 1996).  It encodes 

an aldehyde dehydrogenase (Liu et al. 2001).   

Dewey et al. (1986) first found two unique 1.6/0.6 kb transcripts in restored (T) B37 

(Rf1/Rf1, Rf2/Rf2) as compared to sterile (T) B37 (rf1/rf1, Rf2/Rf2) when using portions of T- 

urf13 (historically designated ORF13) sequence as probes for RNA gel blot analysis.  Kennell et 

al. (1987) also observed the 1.6 kb transcript in five different restored inbred lines.  Dewey et al. 

(1987) showed that Rf1 alone is responsible for the accumulation of the 1.6 kb transcript by 

showing only plants Rf1/--, Rf2/-- and Rf1/--, rf2/rf2 displayed the transcript while rf1/rf1, Rf2/-- 
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and rf1/rf1, rf2/rf2 did not.  Four rf1-m alleles were identified which showed reduced or no 

accumulation of the 1.6/0.6 kb transcripts (Wise et al. 1996).  Taken together, these experiments 

show Rf1 is associated with the accumulation of additional 1.6/0.6 kb T-urf13 transcripts while 

Rf2 is not involved in transcript processing.   

Partial fertility is restored by the combined action of Rf2a and one of two nuclear genes, 

Rf8 or Rf*.  Rf8 and Rf* are associated with the accumulation of additional 1.42/0.42 kb and 

1.4/0.4 kb T-urf13 transcripts, respectively (Dill et al. 1997).  Dill et al. (1997) also reported that 

Rf8 is environmentally sensitive and incompletely penetrant.  Rf8 is rare in maize germplasm.  In 

a survey of 10 inbred lines, Dill et al. (1997) only found Rf8 in the inbred line (N) wx1-m8.  Pei 

(2000) showed Rf8 is linked to Rf*, another uncharacterized partial restorer allele.   

Rf8 and Rf* map near the white pollen (whp1) gene on chromosome 2L (Pei 2000).  whp1 

is a visual marker historically used because of its easily identifiable phenotype.  S cytoplasm 

fertility restorer Rf3 also maps to 2L (Laughnan and Gabay-Laughnan 1983).  Fine mapping 

positioned Rf3 4.3 cM distal to whp1 (Kamps and Chase 1997).  In addition, five Rf alleles from 

Mexican maize capable of restoring S cytoplasm were linked to whp1 (Gabay-Laughnan et al. 

2004).  Clearly this complex locus is a hotspot for fertility restoration. 

T-urf13 and URF13 

The T-urf13 sequence is a unique rearrangement of mitochondrial DNA.  Upstream of T-

urf13, there is a 5 kb repeat similar to the ATPase subunit 6 gene (atp6).  The atp6 gene is found 

in normal and T cytoplasms while the duplication of this 5 kb segment is only found in T 

cytoplasm (Dale et al. 1984).  This segment contains promoter sequences 5’ to atp6.  The 345 bp 

T-urf13 coding sequence is similar to the 3’ region of the 26S rRNA mitochondrial gene (rrn26) 

(Dale et al. 1984; Dewey et al. 1986).  The 58 bp at the 3’ terminus of T-urf13 is 100% similar to 



6 

 

 

1,055-1,110 bp of rrn26 which encode ribosomal RNA helices (Dale et al. 1984).  Co-

transcribed with T-urf13 is the 663 bp orf221.  At the 3’ terminus of orf221 is sequence similar 

to tRNA
Arg

 that appears to be of chloroplast origin (Dewey et al. 1986).  Multiple recombinations 

are needed to produce this unique mitochondrial sequence.    

T-urf13 encodes a 13 kD protein designated URF13 (Wise et al. 1987a).  This is a ligand-

gated, pore-forming protein in the inner mitochondrial membrane (Dewey et al. 1987; Rhoads et 

al. 1995).  The T toxin binds to the protein causing a conformational change and ion leakage 

leaving the mitochondria incapable of oxidative phosphorylation (Braun et al. 1989; Matthews et 

al. 1979).  Wise et al. (1987b) found a frameshift T-urf13 mutant in maize, designated T-4, to be 

toxin insensitive.  The T-4 T-urf13 sequence is characterized by a guanine to adenine single 

nucleotide polymorphism at 213 bp and a five bp insertion at 214 bp (Wise et al. 1987b).  These 

changes make the T-4 sequence homologous to 86 bp 3’ of rrn26 (Wise et al. 1987b).  T-4 

URF13 protein was truncated from 113 amino acids to 74 due to a frameshift that created a 

premature stop codon.  Similarly, Braun et al. (1989) showed that URF13 must contain at least 

the first 83 amino acids to be toxin sensitive when expressed in E. coli.  These studies show the 

carboxy terminal end of the protein is not essential for toxin sensitivity.   Site directed 

mutagenesis of the aspartate at position 39 revealed this amino acid is required for the URF13/T 

toxin interaction (Braun et al. 1989).   

There are seven major transcripts of T-urf13: 3.9, 2.0, 1.8, 1.5, 1.1, 1.0, and 0.8 kb 

(Dewey et al. 1986; Dill et al. 1997; Kennell and Pring 1989; Kennell et al. 1987; Wise et al. 

1996).  Many of these transcripts are thought to be processing events of the 3.9 kb transcript 

(Kennell and Pring 1989).  Restored T cytoplasm plants carrying the Rf1 allele are characterized 

by the presence of the 1.6/ 0.6 kb transcripts.  The 1.6 kb transcript is a derivative of the 2.0 or 
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1.8 kb transcripts while the 0.6 kb transcript is a derivative of the 1.0 kb transcript (Kennell and 

Pring 1989; Kennell et al. 1987).  Similarly, the 1.42 kb Rf8-mediated transcript is a derivative of 

the 2.0 or 1.8 kb transcript while the 0.42 kb transcript is a derivative of the 1.0 kb transcript 

(Dill et al. 1997). 

A mechanism for T-urf13-mediated male sterility 

The mechanism of T-urf13-mediated male sterility is poorly understood.  It is unclear 

why T-urf13 causes degradation of the tapetal layer in the absence of T toxin.  One possibility 

suggests the mechanism for CMS and toxin sensitivity are the same (Flavell 1974).  Although all 

T cytoplasm maize cells express the T-urf13 gene (Hack et al. 1991), there many examples of 

tissue specific regulation of mitochondrial genes (Conley and Hanson 1994).  The presence of a 

currently unidentified toxic “factor X” that is only active in the tapetal cell layer could induce 

tapetum degradation.  Another possibility states that since different tissues have various 

metabolic activity levels, tissue specific degradation might occur if the metabolic activity is too 

high (Warmke and Lee 1978).  Microsporogenesis requires a very high rate of metabolic activity.  

There is a 40 fold increase in mitochondria number in the tapetal layer while the nucellus and 

embryo sac have no significant increase (Lee and Warmke 1979).  This could account for the 

male sterile yet female fertile nature of T cytoplasm. 

Restorer of fertility genes in other species 

To date, there are five species with cloned restorer of fertility genes—maize (Cui et al. 

1996), petunia (Petunia hybrida) (Bentolila et al. 2002), radish (Brown et al. 2003; Desloire et al. 

2003; Koizuka et al. 2003), rice (Oryza sativa) (Kazama and Toriyama 2003; Komori et al. 

2003) and sorghum (Sorghum bicolor) (Klein et al. 2005).  Rf genes seem to function by altering 

the expression of CMS-associated mitochondrial ORFs.  With the exception of Rf2a of maize, all 
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other Rf genes contain PPR motifs (reviewed in Andrés et al. 2007; Saha et al. 2007; Schmitz-

Linneweber and Small 2008).  These motifs were first named by Small and Peeters (2000).  PPR 

proteins are RNA-binding proteins specific to mitochondria and chloroplast with roles in RNA 

editing, stabilization and cleavage.  This protein family is greatly expanded in terrestrial plants 

(O'Toole et al. 2008).   

PPR proteins are divided into the P and PLS subfamilies (Lurin et al. 2004).  PPR 

proteins are unique to eukaryotes while the PLS subfamily is unique to land plants (Lurin et al. 

2004).  The P subfamily includes proteins that have the 35 amino acid P motif tandemly repeated 

on average 12 times (Lurin et al. 2004).  The PLS subfamily is characterized by two other plant 

specific motifs, PPR-like L (long) and the PPR-like S (short) (Lurin et al. 2004).  Proteins from 

this subfamily have the P, L, and S motifs tandemly repeated, usually in this order.   

There are three additional C terminal domains that are only found in some plant PPR-PLS 

proteins: E, E+, and DYW.  These domains are almost never found in multiple copies. They are 

usually observed in the E - E+ - DYW order so that DYW is always C terminal.  These domains 

are nested in an orderly fashion.  If a protein has a DYW domain, it is almost always preceded by 

the E+ domain.  If a protein has the E+ domain, it is almost always preceded by the E domain 

(Lurin et al. 2004).  Cloned radish, rice, and petunia Rf genes are all members of the P subfamily 

of PPR proteins (Saha et al. 2007) while Rf1 of sorghum is a PLS PPR containing an E terminal 

domain (Klein et al. 2005).  How this E domain affects the mode of action for the sorghum Rf1 

gene is unknown.   

CMS-associated PPR encoding genes are usually present in clusters typically with only 

one functional gene (Lurin et al. 2004).  Each gene in the clusters shows high similarity 

suggesting recent gene duplication.  The cloned Rf genes in petunia, radish, and rice are present 
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in clusters of PPR genes (Akagi et al. 2004; Bentolila et al. 2002; Brown et al. 2003; Desloire et 

al. 2003; Komori et al. 2003).  Interestingly, Rf1 of sorghum is not located in a PPR cluster 

(Klein et al. 2005).  A candidate gene has been identified for Rf2 of sorghum.   Similar to 

sorghum Rf1, the candidate gene is a lone PPR protein (Jordan et al. 2010).  The differences 

between sorghum and the other species’ Rf genes could be clues to the Rf1 and Rf8 loci since 

sorghum is a close relative of maize.   

The recently sequenced B73 genome is a tremendous resource for the maize community.  

Integrated physical and genetic maps provide valuable resources for mapping.  Faster and more 

efficient marker development allows for even finer resolution on genetic maps.  Gene 

annotations and expressed sequence tag (EST) alignments provide essential information on 

features in a given region.  

It is important to understand CMS/Rf systems because of their potential in creating hybrid 

seed.  It is also important to learn about nuclear/plastid genome interactions as mitochondria 

significantly affect plant development.  There are many unresolved questions about T cytoplasm 

maize.  What are the molecular mechanisms underlying expression of Rf1 and Rf2a?  Why are 

restored T cytoplasm plants still highly susceptible to T toxin?  Why do the truncated transcripts 

associated with Rf1, Rf8, and Rf* correspond to the reduction of the URF13 protein?  Do Rf1, 

Rf8, and Rf* have functions in N cytoplasm?  Are Rf1, Rf8, and Rf* PPR proteins?  What is the 

structure of the fertility locus on 2L?  Genetic mapping of the rf8 locus is a first step in 

understanding T cytoplasm in greater detail.   
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Abstract 

Cytoplasmic male sterility (CMS) is often associated with chimeric mitochondrial open 

reading frames.  In T cytoplasm maize, CMS results from the action of the unique T-urf13 

mitochondrial gene.  Full (or partial) fertility restoration of T-cytoplasm maize is mediated by 

the Rf2a nuclear gene, in combination with one of three other genes: Rf1, Rf8, or Rf*.  Rf2a 

encodes a mitochondrial aldehyde dehydrogenase; Rf1, Rf8, and Rf* are all associated with 

unique T-urf13 mitochondrial transcript processing activity.  Codominant and cleaved amplified 

polymorphic sequence (CAPS) markers were derived from the filtered gene set of 

Maizesequence.org release 4a.53, in order to amplify introns and 3’ untranslated regions (UTRs), 

and used on a backcrossed population of 1,731 plants to genetically map Rf8 to the whp1-umc36 

interval on chromosome 2L.  RNA processing activity associated with rf8 maps to a 4.56 Mb 

region on 2L that contains seven pentatricopeptide repeat (PPR) encoding genes in B73.  Rf3, 

which restores S cytoplasm, has also been mapped to this PPR cluster.  Partially male-fertile 

plants segregated for the presence or absence of the Rf8-associated 1.42/0.42-kb transcripts, 
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indicating that the presence of the transcript is not necessary for anther exertion.  Plants with 

successive amounts of backcrossing and test-crossing were analyzed for their fertility 

phenotypes.  Plants re-introduced with (N) wx1-m8 (rf1/rf1, Rf2/Rf2, Rf8/rf8) background 

showed more fertility than plants backcrossed to (N) W64A (rf1/rf1, Rf2/Rf2, rf8/rf8).  A 

statistically significant 2.7 to 3.4 day delay in flowering was observed between partially male-

fertile and mostly male-fertile plants.  Mostly sterile plants flowered at a significantly later day 

after planting than mostly fertile plants.  Combined, these new results demonstrate the possibility 

that male fertility is under the control of more than one nuclear locus.   

Abbreviations: cytoplasmic male sterility, CMS; pentatricopeptide repeat, PPR; sequence 

characterized amplified region, SCAR; amplified fragment length polymorphism, AFLP; bulk 

segregant analysis amplified fragment length polymorphism, BSA-AFLP; rapid amplified 

polymorphic DNA, RAPD; restriction fragment length polymorphism, RFLP; codominant 

amplified polymorphic sequence, CAPS; hexadecyltri-methylammonium bromide, CTAB; days 

after planting of the first flowering, DAPFF; restorer of fertility, Rf; Rf-like, RFL; untranslated 

region, UTR; tetratricopeptide repeat, TPR 

Introduction 

Cytoplasmic male sterility (CMS) is a maternally inherited inability to produce functional 

pollen.  There are three types of CMS cytoplasm in maize (Zea mays L.): T, S, and C (Beckett, 

1971). The mitochondrial gene responsible for male sterility in T cytoplasm is T-urf13 (Dewey 

et al., 1987; Wise et al., 1987b).  This gene encodes a 13 kDa protein designated URF13, which 

localizes to the inner mitochondrial membrane (Dewey et al., 1987; Wise et al., 1987a).  T 

cytoplasm is also highly susceptible to T toxin produced by the ascomycete fungus, Cochliobolus 

heterostrophus (asexual stage Bipolaris maydis), the casual agent of southern corn leaf blight.  
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The presence of specific nuclear genes mediates the restoration of male fertility to CMS plants.  

In T cytoplasm, this is accomplished by the combined action of Rf1 and Rf2a (Duvick, 1956; 

Wise et al., 1999a).  Rf1 mediates a series of mitochondrial transcript processing events, resulting 

in the accumulation of additional 1.6/0.6-kb T-urf13 transcripts, whereas Rf2a is an aldehyde 

dehydrogenase and is not involved in transcript processing (Liu et al., 2001). 

T cytoplasm maize also has nuclear genes that restore partial fertility.  Rf8 and Rf* 

mediate partial restoration in combination with Rf2a (Dill et al., 1997).  Rf8 and Rf* are 

associated with the accumulation of additional 1.42/0.42- and 1.4/0.4-kb T-urf13 transcripts, 

respectively (Dill et al., 1997).  While Rf1 and Rf2a have been genetically mapped to 

chromosomes 3 and 9 respectively (Schnable and Wise, 1994), the position of Rf8 has not yet 

been reported.  Restriction fragment length polymorphism (RFLP) analyses of families 

segregating for Rf8 showed that Rf8 and Rf1 are independent and unlinked (Dill et al., 1997).  

Because Rf8-associated flowering is environmentally sensitive, the most reliable way to assay 

the plants for Rf8 is to determine via RNA gel blot analysis if the1.42/0.42-kb transcripts are 

present.  Rf8 and Rf1 have similar molecular phenotypes.  Both genes are associated with 

additional accumulation of T-urf13 transcripts, and both are reported to restore at least some 

fertility to T cytoplasm plants (Dill et al., 1997; Wise et al., 1987a).  Both genes are also 

associated with decreased accumulation of URF13 (Dewey et al., 1987; Dill et al., 1997).  The 

Rf8-mediated URF13 reduction is less pronounced in ears than tassels, whereas the Rf1-mediated 

reduction occurs equally in ears and tassels (Dill et al., 1997; Wise et al., 1987a). 

Of the five species with cloned restorer of fertility genes, four encode pentatricopeptide 

repeat proteins (PPR) (Akagi et al., 2004; Bentolila et al., 2002; Klein et al., 2005; Koizuka et 

al., 2003).  PPR proteins are RNA binding proteins specific to mitochondria with functions in 
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editing, stabilization, and cleavage (Lurin et al., 2004; Small and Peeters, 2000).  The cloned Rf 

genes of radish (Raphanus sativus), rice (Oryza sativa) and petunia (Petunia hybrida) are present 

in clusters of PPR encoding genes with one functional gene and multiple pseudo-genes 

suggesting recent gene duplication (Akagi et al., 2004; Bentolila et al., 2002; Brown et al., 2003; 

Desloire et al., 2003; Komori et al., 2003).  The Rf1 gene of sorghum (Sorghum bicolor), 

interestingly, is not located in a PPR cluster (Klein et al., 2005).  Because Rf1, Rf8, and Rf* are 

associated with the additional accumulation of T-urf13 transcripts, the possibility exists that they 

encode PPR proteins as well.   

Analogous to T-urf13, orf355-orf77 is the mitochondrial gene responsible for male 

sterility in S cytoplasm maize (Zabala et al., 1997).  Likewise, S cytoplasm maize utilizes the 

nuclear gene Rf3 to restore fertility to male sterile plants.  Rf3 cosegregates with a novel orf355-

orf77 transcript accumulation, suggesting an RNA editing function (Wen and Chase, 1999).   

The rf3 locus was mapped to 2L by Laughnan and Gabay (1978) by translocation and inversion 

heterozygotes.  Kamps and Chase (1997) placed rf3 4.3 cM distal to RFLP whp1 and 6.4 cM 

proximal to RFLP bnl7.14.  Shi et al. (1997) mapped rf3 4.8 cM distal to RFLP umc49 and 2.7 

cM proximal to a rapid amplified polymorphic DNA (RAPD) marker, E08-1.2.  Zhang et al. 

(2006) placed rf3 2.4 cM distal to a cleaved amplified polymorphic sequence (CAPS) marker 

and 1.8 cM proximal to a sequence characterized amplified region (SCAR) marker.  Xu et al. 

(2009) observed cosegregation of Rf3-mediated fertility with three PPR encoding genes on 2L in 

900 segregating individuals. 

In order to understand T cytoplasm in greater detail, the sequence and function of the rf8 

locus needs to be elucidated.  The objective of this study was to identify PCR-based markers 

closely linked with rf8.   Here we describe the mapping of rf8 to a 4.56 Mb region on 2L located 
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in contig 108 of Maizesequence.org release 4.53a.  This region includes the Rf3 candidate gene 

region including seven PPR genes.  Plants restored to partial fertility segregated independently of 

the Rf8-associated 1.42/0.42-kb transcripts, suggesting the possibility of additional factors 

affecting pollen exertion in the genome. 

Methods 

Maize nomenclature 

Loci and recessive alleles are designated by lowercase symbols, e.g., the rf8 allele of the 

rf8 locus is a recessive mutant.  Dominant alleles are designated by uppercase symbols, e.g., the 

Rf8 allele of the rf8 locus is wild type.  Lines that carry T cytoplasm (sterile or fertile) are 

referred to as T cytoplasm lines.  Male sterile lines that carry T cytoplasm are designated cms-

(T).  Restored T cytoplasm designates lines restored to fertility via the presence of nuclear 

restorer genes.  Except in rare circumstances, N cytoplasm lines are male fertile. 

Plant material 

 (N) W64A (rf1/rf1, Rf2/Rf2, rf8/rf8) and (N) wx1-m8 (rf1/rf1, Rf2/Rf2, Rf8/Rf8) were the 

two primary inbred lines used in this study.  As illustrated in Figure 1, our initial population 

consisted of progeny derived from a single cross, (T) Rf8-8703/rf8-W64A x (N) rf8-W64A/rf8-

W64A BC2, grown in the 1997 summer nursery at the Iowa State University Curtiss Research 

Farm in Ames, IA.  One hundred seventeen segregating individuals were crossed by (N) rf8-

W64A/rf8-W64A and second (unfertilized) ears were collected from each for DNA and RNA 

extractions.  Ten plants from this 1997 population that possessed the T-urf13-derived 1.42/0.42-

kb transcripts were interpreted as harboring the Rf8 allele (genotype Rf8-8703/rf8-W64A), and 

thus, crosses derived from them were selected to create the 2008 high-resolution BC3 population 

(see Table 2).  This population was also grown at the Curtiss Research Farm in 2008.  Young  



99 2645-4 x 2724
(T) Rf8/rf8 x (N) W64A

98 1126-6 x 1202
(T) Rf8/rf8 x (N) W64A

97 2222-10 x 2230
(T) Rf8/rf8 x (N) W64A

97 2222-15 x 2228-15
(T) Rf8/rf8 x (N) W64A

95 3233-2 x 2227
(T) Rf8/rf8 x (N) W64A

94 4008-1 x 4026
(T) Rf8/Rf8 x (N) W64A

00 3437-1 x 3446
(T) Rf8/rf8 x (N) wx1-m8

01 4136-4 x 4018
(T) Rf8/rf8 x (N) W64A

01 4136-3 x 4149
(T) Rf8/rf8 x (N) wx1-m8

02 5230-21 x 5229-3
(T) Rf8/Rf8 x (N) wx1-m8

BC1

BC2

BC3 BC3

BC4

BC5

BC5TC1

BC6TC1 BC5TC2

BC6TC2

08 7330-1 x 7319
(T) Rf8/rf8 x (N) W64A

BC4

Figure 1. Pedigree of Rf8.  Each box represents a cross.  Plants were either backcrossed 
to (N) W64A (rf1/rf1, Rf2/Rf2, rf8/rf8) or test-crossed to (N) wx1-m8 (rf1/rf1, Rf2/Rf2, 
Rf8/Rf8).  Transcripts associated with Rf8 were identified in the 1994 generation.The 
1997 mapping population is a BC3 generated from one cross.  The 2008 mapping 
population is a BC4 generation and is generated from ten 1997 individuals possessing 
the Rf8-associated 1.42 kb transcripts.  Plants grown for fertility observation in 2009 
are progeny from crosses BC6, BC5TC1, BC4 (2008 cross only), BC6TC1, BC5TC2, 
BC7TC1, and BC6TC2.
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leaf tissue was collected from 1,731 individuals for DNA extractions and fertility phenotypes 

were recorded from adult plants.  Tissue for total RNA extractions was collected from immature 

second ears from 952 individuals and 1,584 plants were crossed by (N) rf8-W64A/rf8-W64A.   

Observation of fertility phenotypes 

Male fertility was scored based on the four category system—S, sterile; “S”, partially 

fertile; “F”, mostly fertile; F, fertile—as described in Schnable and Wise (1994).  Sterile 

indicates no anther exertion; partially fertile indicates >0 but <50% of the anthers on the tassel 

exerted; mostly fertile indicates >50% but <100% of the anthers exerted; fertile indicates 100% 

of the anthers exerted.  The 2008 field was observed for fertility every day for 17 consecutive 

days, starting at the beginning of flowering (8/4/2008) and ending three days after anther 

exertion from the last plant (8/20/2008). 

Plants containing an Rf8 allele appear to lose fertility with increasing numbers of 

backcrosses to (N) W64A. To account for this observation, plants with successive amounts of 

backcrossing to (N) W64A and test-crossing to (N) wx1-m8 were grown in 2009 at Curtiss 

Research Farm.  The origin of the wx1-m8 stock is described in detail in Wise and Schnable 

(1994) and is illustrated in Figure 1.  Sixty progeny each from five crosses BC5TC1, BC4 (2008 

cross only), BC6TC1, BC5TC2, and BC6TC2 were grown.  Fertility observations and leaf tissue 

for DNA analysis were collected from all plants.  A subset of plants was tested for fertility by 

crossing as males onto (T) W64A or (N) wx1-m8.  Pollen was tested from each genotype that 

flowered and all plants tested produced kernels. 

DNA isolation and analysis 

For the 1997 mapping population, DNA was extracted using a 1g Hexadecyltri-

Methylammonium Bromide (CTAB) extraction (Wise et al., 1996).  One hundred seventeen 
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individuals were subjected to Bulked Segregant Amplified Fragment Length Polymorphism 

(BSA-AFLP) analysis as described by Wei et al. (1999).   

For the 2008 mapping population, isolation of DNA was performed using a modified 96-

well CTAB extraction (Dietrich et al., 2002).  PCR primers were designed from the filtered gene 

set on Maizesequence.org (Schnable et al., 2009) to amplify introns or 3’ UTRs from linked 

genes (see Table 1).  Primers were designed to be codominant markers, CAPS markers, or size 

polymorphic markers.  PCR conditions were 3 min at 95°C, 30 sec at 95°C, 30 sec at Tm, 1.5 

min at 72°C, 40 cycles, 10 min for 72°C, hold 4°C.   

To efficiently screen the large 2008 mapping population, PCR primers were derived from 

the RFLP markers used in the 1997 mapping study.  Overgo sequences were located at 

MaizeGDB.org (Lawrence et al., 2008) for the csu811 and umc36 RFLPs.  These sequences 

were blasted against the maize genome using Maizesequence.org release 4a.53 (Schnable et al., 

2009).  These overgos aligned to two genes on 2L (see Table 1).  From these genes, PCR primers 

were designed to amplify interior portions of these genes. 

RNA isolation and analysis 

Total RNA was isolated from one gram of frozen second immature ear tissue via a 

Trizol-like reagent: 38% saturated phenol pH 4.3, 1 M guanidine thiocyanate, 1 M ammonium 

thiocyanate , 0.1 M sodium acetate pH 5.0, and 5% glycerol (Caldo et al., 2004).  Eight µg of 

RNA were denatured with glyoxal (Ambion, Austin, TX) and size fractionated on a 1.8% 

SeaKem GTG agarose gel (FMC, Rockland, ME) with 0.01M iodoacetic acid (Sigma, St. Louis, 

MO) for 14 hours at 4°C.  The gel and the circulating running buffer was 10mM Na2HPO4 pH 

7.0.  RNA was transferred to a Hybond XL membrane (GE Healthcare /Amersham Biosciences) 

for 4 hours using 20x SSC (3 M NaCl, 0.3 M sodium citrate, pH 7.0) as a transfer buffer, and 
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Table 1. List of Rf8 mapping primers 

Marker
†
 Located in Gene

‡
 Marker Type Primer Sequence (5’-3’) 

Restriction 

Enzyme Tm 

76755p2 GRMZM2G076755  codominant TGAAGAAATGGTGATGCGAGC 

ACAGATGGCACTCCTGATGTGTC 

-- 56 

135087p1 

 

GRMZM2G135087 size 

polymorphism 

TGGAATACTTGCTTCTTGCTTGG 

CAATGGTTATGCGTGAACGGG 

-- 56 

144635p4 

 

GRMZM2G144635 codominant TTGTGCTTGGGCTTTTCACG 

CCTGACTTCCTGCTTTTGTATCGC 

-- 54 

66902p1 GRMZM2G066902 codominant CGCTAACGCTTTCCTCTTGGAC 

CTGTTCCCCATCCTTTCTACATC 

-- 56 

csu811_p9 AC217293.3_FGT007 codominant CGAGGTCGAATCAAATTCTTCC                           

GTACGGGCGGTTAAAGAAAC 

-- 56 

J04p6 GRMZM2G108171 size 

polymorphism 

CAAAGTCTCTGTCACTGTCACCTGG                    

TCTTCTTCCTCCTCCCTTGGAC 

-- 60 

J04p8 GRMZM2G108171 size 

polymorphism 

TTAGTTGATTAGAGGAGGTTGCGG                     

GTCATTTAGCGTTTAGCGTCCAAG 

-- 60 

18p4 GRMZM2G092284 CAPS
§
 AAGATCATTCGGCGCGAGAA                      

CGGAGCCAAAACATGTGAAA 

MseI 56 

87p2 GRMZM2G035807 CAPS ACATTGGTCTTTGTGGAGAC                            

TTCACACCCAACAGGTTGAC 

DraI 56 

10p2 GRMZM2G149935 CAPS CGTAATGAAATGCGACGACG                 

CGTAGCCAGGTCCATTAGCA 

MseI 56 

26p3 GRMZM2G147819 CAPS AGTTAAGGCTATCAGAATGA              

ACTGACGATCAAATCTGATC 

ApoI 56 

umc36_p10 GRMZM2G059033 codominant CCTGGTGCACCATGTGATAGTTT                 

TTACCATGCCAATGGAATTG 

-- 56 

†
Marker names are based on the predicted gene they are designed from on Maizesequence.org release 4a.53 (Schnable et al., 

2009). 
‡
Genes are from the filtered gene set from Maizesequence.org release 4a.53. 

§
Cleaved amplified polymorphic sequence marker. 
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crosslinked with 220 MJ of UV light emitted by 312 nm bulbs in a Stratalinker 2400 

(Stratagene, La Jolla, CA), followed by baking at 80°C for 1 hour.  The fixed RNA was de-

glyoxylated by treating the membrane in 20 mM Tris-Cl pH 8 at 65°C for 30 minutes.  The 

T-urf13 derived T-st308 DNA probe (Wise et al., 1996) was used for hybridization.  Probe 

DNA was random labeled with α-
32

P dCTP (Perkin Elmer, Waltham, MA) (Feinberg and 

Vogelstein, 1983).  Hybridization was carried out for 18 hours at 65°C in 7% SDS, 1% BSA, 

1mM Na2EDTA, 0.5 M NaHPO4, pH 7.2 (Church and Gilbert, 1984).  Membranes were 

incubated at 65°C in 1x SSPE 0.1x SDS (20x SSPE contains 0.2 M monobasic sodium 

phosphate, 3.6 M NaCl, 20 mM EDTA, pH 7.4) for two 30 minutes washes, followed by a 

one hour wash. A more stringent wash in 0.1x SSPE 0.1x SDS was done for 15-20 minutes 

and membranes were exposed to CL-XPosure film (Thermo Scientific, Rockford, IL) for 1-

10 days at -80°C using two Dupont Cronex Lightning Plus intensifying screens (Sigma, St. 

Louis, MO). 

Results 

The rf8 locus maps to maize chromosome 2L 

To position the gene encoding the Rf8-associated T-urf13 processing activity on the 

maize genetic map, DNA from 117 individuals from the 1997 mapping population were 

tested for Rf8-associated transcripts via RNA gel blot analyses.  This information was 

utilized in the design of a BSA-AFLP strategy (see Methods).  Two-hundred fifty six 

pairwise combinations of EcoRI and MseI primers were tested on the mapping parents, (T) 

Rf8-8703/rf8-W64A and (N) rf8-W64A/rf8-W64A, and two contrasting DNA pools; one 

representing 16 progeny displaying the T-urf13-derived 1.42/0.42-kb transcripts and the 

other representing 16 progeny without the 1.42/0.42-kb transcripts.  Three-hundred twenty 
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five polymorphisms were found with twenty conserved between the mapping parents.  Of 

these, three polymorphic AFLPs confirmed linkage to Rf8.  Sequence tagged site markers 

were designed from these cloned AFLP fragments (Yu and Wise, 2000) and one, designated 

ias21, displayed a polymorphism between the T232 and CM37 parents of the Brookhaven 

mapping population (Burr et al., 1988).  The ias21 forward and reverse primers, 5’-

TGCCACACTTTATCTAAGGTT-3’ and 5’-TTGCTTTTGCGACAACGACGA-3’, 

respectively, corresponding to Arf8.3 (E-AGA/M-CTA) AFLP, were used to amplify a DNA 

fragment that cosegregated in the Brookhaven low-resolution mapping population with whp1 

on 2L.  RFLP markers linked to whp1 were also tested and csu811 and umc36 cosegregated 

closely with Rf8.   

Positioning rf8 on the maize genome sequence 

Results derived from the 1997 BC2 mapping population indicated that the gene 

mediating the accumulation of the additional 1.42/0.42-kb T-urf13 transcripts is closely 

linked to the csu811 and umc36 RFLPs near whp1 on 2L (Pei, 2000).  In order to further 

characterize the rf8 locus and take advantage of the newly sequenced maize genome 

(Schnable et al., 2009), progeny from ten 1997 BC3 crosses were used to create a large 2008 

BC3 mapping population.  RFLP markers csu811 and umc36 were converted into the PCR 

markers csu811_p9 and umc36_p10 by amplifying the gene associated with the RFLP (see 

Table 1).   

Two hundred fifty-three primer pairs were designed to amplify 3’UTRs and introns of 

genes around the whp1-csu811-umc36 region.  Amplicons derived from these primers were 

screened against (N) wx1-m8 and (N) W64A for size polymorphisms.  CAPS markers were 

developed from sequence of monomorphic amplicons of the parents and a small subset of 
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segregants.  This allowed for the identification of informative SNPs that differentiate the 

wx1-m8 and W64A parents present in the mapping population.  As shown in Table 1, ten 

additional markers were linked to Rf8.  These markers were tested on the population and, 

along with RNA blot analysis to determine accumulation of the 1.42/0.42-kb T-urf13 

transcripts, genetic distance was calculated (see Figure 2 and Table 2).  Based on this 

analysis, rf8 resides between polymorphic markers 76755p2 and 135087p1.  Figure 3 

displays the flanking markers on a subset of the segregating population.  The flanking region 

is an 8.28 ± 3.25 cM region in the 2008 population, which corresponds to a 4.56-Mb region 

in B73 in contig 108.   

Table 2. Comparison of genetic distances among PCR markers flanking the rf8 locus 

Interval 

No. of 

Plants 

Tested 

Minimum 

No. of 

Recombinant 

Plants 

Maximum 

No. of 

Recombinant 

Plants 

Genetic 

Distance
†
 

B73 

Physical 

Size
‡
 

kb/cM 

Ratio 

76755p2 to 135087p1 616 31 71 8.25 ± 3.25 4.56 Mb 552.73 

135087p1 to 144635p4 701 1 54 3.92 ± 3.78 0.81 Mb 206.63 

144635p4 to 66902p1 700 22 75 6.93 ± 3.79 2.01 Mb 290.04 

66902p1 to csu811_p9 1141 22 30 2.28 ± 0.35 0.84 Mb 368.42 

csu811_p9 to umc36_p10 1106 40 43 3.75 ± 0.14 1.00 Mb 266.67 

†
Genetic distances are averages of the maximum and minimum amount of recombination 

possible for a given region. 

‡
Corresponding

 
B73 physical size taken from Maizesequence.org release 4a.53 (Schnable et 

al., 2009) 
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Candidate gene analysis 

As shown in Table 3, the identified 76755p2 – 135087p1 region flanking rf8 contains 

4.56 Mb and 108 genes from the filtered gene set in the B73 genome.  This region contains 

the markers located in pentatricopeptide repeat encoding genes that cosegregated perfectly 

with 900 segregating individuals in an Rf3, S-cytoplasm, mapping population (Xu et al., 

2009).  There are a total of seven PPR encoding genes in the 4.56-Mb Rf8 flanking region.  

Two, GRMZM2G450166 and GRMZM2G053384, are lone PPR encoding genes separated 

by 369 kb.  Approximately 554 kb distal to GRMZM2G053384 is a cluster of three PPR 

encoding genes, GRMZM2G439814, GRMZM2G453956, and GRMZM2G130684, spanning 

a 65 kb region.  Two-hundred twelve kb distal to this cluster are two more PPR encoding 

genes, GRMZM2G416498 and GRMZM2G124602, 82 kb apart.  GRMZM2G053384 is 

significantly different from the other six PPR encoding genes in this region in that it does not 

belong to the clade of PPRs that contain Rf genes.  The other six PPRs belong to a clade of 

PPRs that encompass known restorer of fertility genes in plants (Akagi et al., 2004; Bentolila 

et al., 2002; Brown et al., 2003; Desloire et al., 2003; Klein et al., 2005).  

GRMZM2G416498 and GRMZM2G124602 are similar to each other in that they have 

longer cDNAs than the other five PPR encoding genes.  In addition to these PPR encoding 

genes, GRMZM2G070831 is a pre-mRNA processing factor positioned 909 kb proximal to 

the PPRs and GRMZM2G000936 is a tetratricopeptide repeat (TPR) encoding gene located 

in this PPR cluster.  It would be very interesting to generate more markers closer around 

these genes to finer map this region.  Because previously cloned Rf genes encode PPR 

proteins, with the exception of maize Rf2a, and are involved in RNA processing, this is 
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strong evidence Rf8 might be a PPR protein as well.  The genes in this region are ideal 

candidates for Rf8. 

 

Table 3.  Genes in the rf8 flanking region 

Gene
†
 Predicted Function Sequence Coordinates

‡
 

GRMZM2G076755
§
 Unknown/ Sodium symporter 220,473,907-220,484,805 

GRMZM2G130379 Rubredoxin/ electron transfer 220,550,618-220,552,170 

GRMZM2G410567 GH3 auxin-responsive promoter 220,594,675-220,601,030 

GRMZM2G322844 

Natural resistance-associated 

macrophage protein 220,683,705-220,690,184 

GRMZM2G027130 Thiolase/ chalcone synthase 220,758,932-220,760,360 

GRMZM2G056088 Unknown 220,762,697-220,767,088 

GRMZM2G151227 whp1 Thiolase/ chalcone synthase 220,851,374-220,855,359 

GRMZM2G003043 Cyclin-like 220,938,266-220,945,517 

GRMZM2G166776 Unknown 221,039,208-221,040,102 

GRMZM2G166674 Unknown 221,110,152-221,111,536 

GRMZM2G166661 Unknown 221,120,460-221,122,428 

GRMZM2G173377 Unknown 221,130,826-221,131,827 

GRMZM2G065144 Ferric reductase 221,211,336-221,217,052 

GRMZM2G169095 Peptidase M24 221,307,146-221,319,083 

GRMZM2G358619 Ferric reductase 221,359,430-221,365,687 

GRMZM2G358633 Unknown 221,386,897-221,389,623 

GRMZM2G037993 Ferric reductase 221,437,834-221,442,320 

GRMZM2G038024 Unknown 221,443,416-221,444,381 

GRMZM2G414114 TCP transcription factor 221,498,388-221,502,599 

GRMZM2G114948 Unknown/ DUF247 221,510,904-221,512,518 

GRMZM2G023328 Tropomyosin 221,521,249-221,522,336 

GRMZM2G023585 Unknown 221,527,375-221,529,196 

GRMZM2G105317 Histone fold 221,566,199-221,570,137 

GRMZM2G455945 Unknown 221,633,859-221,647,475 

GRMZM2G703399 Unknown 221,674,750-221,675,272 
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Table 3. (continued)   

Gene
†
 Predicted Function Sequence Coordinates

‡
 

GRMZM2G097896 Patatin/ storage protein 221,708,947-221,716,048 

GRMZM2G064475 Unknown 221,782,209-221,795,694 

GRMZM2G064366 Unknown 221,805,987-221,814,288 

GRMZM2G301399 Unknown 221,826,298-221,827,593 

GRMZM2G107922 Unknown 221,869,911-221,870,634 

GRMZM2G107931 Unknown 221,886,689-221,887,451 

GRMZM2G107945 Galactose oxidase-like 221,889,489-221,893,852 

GRMZM2G408768 14-3-3 protein binding domain 221,894,448-221,897,770 

GRMZM2G408809 Unknown 221,896,924-221,898,014 

GRMZM2G367348 

Unknown/ Ca++ chelating serine 

protease 221,957,410-221,957,916 

GRMZM2G066546 Unknown 221,962,968-221,963,545 

GRMZM2G056977 Unknown 221,993,469-221,994,155 

GRMZM2G355940 Peptide chain release factors 221,997,252-222,006,779 

GRMZM2G057056 

MAF/ putative inhibitor of septum 

formation 222,010,013-222,011,627 

GRMZM2G090559 Unknown/ ankyrin repeat 222,053,912-222,058,724 

GRMZM2G099765 Peptidase C1A 222,131,459-222,133,577 

GRMZM2G099862 Unknown/ DNA binding 222,134,172-222,137,583 

GRMZM2G022863 Knottin 222,148,257-222,148,880 

GRMZM2G074496 Unknown/ defense 222,202,183-222,205,027 

GRMZM2G460429 Unknown 222,235,488-222,241,159 

GRMZM2G139813 Aminotransferase 222,274,112-222,282,345 

GRMZM2G448692 Unknown/ DUF724 222,293,549-222,296,161 

GRMZM2G040932 Knottin 222,299,265-222,299,873 

GRMZM2G426158 unknown 222,383,480-222,384,604 

GRMZM2G055594 unknown 222,418,832-222,419,648 

GRMZM2G355760 unknown 222,423,800-222,426,506 

GRMZM2G458077 Protein kinase-like 222,473,523-222,475,729 

GRMZM2G068011 unknown 222,480,641-222,481,878 
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Table 3. (continued)   

Gene
†
 Predicted Function Sequence Coordinates

‡
 

GRMZM2G159756 Protein kinase-like 222,622,444-222,626,799 

GRMZM2G001405 decarboxylase 222,675,628-222,676,953 

GRMZM2G170161 BSD domain 222,698,315-222,702,905 

GRMZM2G470984 Phytosulfokine 222,702,423-222,702,779 

GRMZM2G070831 Pre-mRNA processing  222,740,921-222,743,823 

GRMZM2G372058 Unknown/ leucine rich repeat 222,756,468-222,759,377 

GRMZM2G372068 UDP glycosyltransferases 222,781,284-222,783,413 

GRMZM2G135354 Prefoldin 222,825,277-222,827,621 

GRMZM2G433731 Unknown 222,831,054-222,835,549 

GRMZM2G703402 Unknown 222,998,264-222,999,255 

GRMZM2G067713 Unknown 223,024,157-223,026,712 

GRMZM2G313110 Unknown 223,152,021-223,153,218 

GRMZM2G023652 Unknown 223,175,575-223,180,049 

GRMZM2G457381 DNA binding 223,296,617-223,297,569 

GRMZM2G106531 Carotene isomerase 223,340,203-223,345,192 

GRMZM2G106604 Unknown/ DUF593 223,347,756-223,351,926 

GRMZM2G451729 Unknown 223,384,093-223,386,877 

GRMZM2G150813 Unknown 223,396,530-223,400,729 

GRMZM2G083095 

Chaperone/ tailless complex 

polypeptide 223,420,920-223,425,765 

GRMZM2G083599 Glycoside hydrolase 223,426,404-223,428,432 

GRMZM2G066394 Pseudouridine synthase 223,496,051-223,496,754 

GRMZM2G345622 Peptidase S8 223,604,047-223,607,752 

GRMZM2G053384 Pentatricopeptide repeat protein 223,650,313-223,652,692 

GRMZM2G353343 Unknown/ lipid transfer protein 223,652,940-223,654,236 

GRMZM2G000936 

Tetratricopeptide repeat/ protein 

binding 223,673,828-223,679,284 

GRMZM2G177008 Unknown 223,965,177-223,967,729 

GRMZM2G475554 Unknown 223,980,488-223,982,402 

GRMZM2G406131 Unknown 223,992,476-223,992,865 
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Table 3. (continued)   

Gene
†
 Predicted Function Sequence Coordinates

‡
 

GRMZM2G318393 Unknown 223,993,853-224,001,784 

GRMZM2G318412 Unknown/ Homeodomain-like 224,003,547-224,005,842 

GRMZM2G450166 Pentatricopeptide repeat protein 224,019,777-224,020,722 

AC196106.2_FG001 Unknown 224,147,225-224,149,150 

GRMZM2G303463 Unknown/ DNA binding domain 224,238,351-224,242,411 

GRMZM2G081377 Unknown 224,276,996-224,278,364 

GRMZM2G158298 Histone H2A 224,518,641-224,520,201 

GRMZM2G158288 Nucleic acid-binding proteins/ OB fold 224,520,402-224,525,465 

GRMZM2G158279 Unknown 224,526,051-224,526,826 

GRMZM2G158175 Unknown 224,568,325-224,572,222 

GRMZM2G439814 Pentatricopeptide repeat protein 224,573,474-224,574,223 

GRMZM2G439788 Unknown 224,574,326-224,575,450 

GRMZM2G453956 Pentatricopeptide repeat protein 224,577,905-224,579,311 

GRMZM2G408232 Unknown 224,585,779-224,591,928 

GRMZM2G008865 Histone H2A 224,631,239-224,632,618 

GRMZM2G130684 Pentatricopeptide repeat protein 224,638,493-224,639,728 

GRMZM2G416498 Pentatricopeptide repeat protein 224,850,717-224,854,307 

GRMZM2G116461 Unknown/ antifreeze 224,856,514-224,860,414 

GRMZM2G416541 Unknown 224,903,535-224,905,474 

GRMZM2G416544 Histone H2A 224,906,096-224,920,835 

GRMZM2G124602 Pentatricopeptide repeat protein 224,932,695-224,936,524 

GRMZM2G124616 Unknown/ peptidase-like 224,938,225-224,945,742 

GRMZM2G097511 Histone H2A 224,977,472-224,979,165 

GRMZM2G135195 Glycotransferase 225,008,737-225,011,848 

GRMZM2G436001 MiaB methiolase 225,020,198-225,024,319 

GRMZM2G436000 Unknown 225,023,999-225,024,577 

GRMZM2G135087
§
 Unknown/ DUF295 domain 225,038,370-225,040,487 

†
Genes taken from the filtered gene set and coordinates are from Maizesequence.org release 

4a.53 (Schnable et al., 2009).  Shaded are the predicted PPR encoding genes, a TPR encoding 

gene, and an RNA editing gene. 
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‡
Sequence coordinates corresponding to Maizesequence.org release 4a.53 (Schnable et al. 

2009) 

§ 
These genes contain the flanking markers for Rf8.  Gene GRMZM2G76755 contains the 

proximal flanking marker while gene GRMZM2G135087 contains the distal flanking 

marker. 

 

Additional Rf loci in the whp1-umc36 interval  

As described above, T-cytoplasm plants segregating for Rf8 accumulate additional 

1.42/0.42-kb T-urf13 transcripts.  Likewise, plants segregating for Rf1 accumulate additional 

1.6/0.6-kb transcripts (Wise et al., 1996), and those segregating for an additional Rf locus, 

Rf*, accumulate additional 1.40/0.40-kb T-urf13 transcripts (Dill et al., 1997; Wise et al., 

1999b).  All three of these T-cytoplasm restorers share a small, conserved target sequence in 

the T-urf13 ORF, yet independently control the modification of T-urf13, CMS-associated, 

transcripts (Dill et al., 1997).  Interestingly, this same target sequence is also highly 

conserved among sites for Rf*-mediated T-urf13 processing and the CMS-associated orf107 

processing regulated by sorghum Rf3 (Tang et al., 1996; Wise et al., 1999a).   

Since we already identified Rf8-linked DNA markers, we further tested the 

relationship between Rf8 and the additional partial restorer, Rf*, by testing Rf8-linked 

markers on segregating progeny of an Rf* mapping population.  A population of 88 progeny 

segregating for Rf* was established using the same procedure used to generate the Rf8 

mapping population (see Methods) and the Rf8-linked 144635p4 PCR-based marker was 

found to be linked to the Rf* locus (Figure 4). 

Having established that Rf* was in the whp1-umc36 interval on maize chromosome 

2L, we performed an additional test to see whether we could directly identify recombinants 

between Rf8 and Rf*.  The experiment was based on RNA blot analysis using two different  
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probes that can differentiate the Rf8 and Rf* specific T-urf13 transcripts.  Probe T-st308 can 

hybridize to the Rf8 specific transcripts (1.42/0.42 kb) as well as the Rf*-specific transcripts 

(1.40/0.40 kb).  The oligo probe CD1721 can only hybridize to the Rf8-specific transcripts 

(Dill et al., 1997). 

An individual heterozygous for Rf* (Rf*-7212/rf*-W64A) was used to pollinate a 

plant heterozygous for Rf8 (Rf8-8703/rf8-W64A) and a BC1 population was generated by 

pollination with (N) W64A (rf8/rf8, rf*/rf*).  Two BC1 families derived from individuals 

carrying both Rf8 and Rf* (98 1233 and 98 1236) were identified from twenty-four planted 

families via RNA blot analysis in the 1998 summer nursery.  A total of fifty-three individual 

plants from the two families (12 from 98 1233 and 41 from 98 1236) were analyzed via RNA 

blot analysis using probes T-st308 and CD1721.  Results are summarized in Table 4.   

If Rf8 and Rf* are encoded by separate, but linked open reading frames, then the BC1 

families would be derived from an individual with the genotype Rf8-8703, Rf*-7212 / rf8-

W64A, rf*-W64A and any of four genotypes could arise (Rf8-8703, Rf*-7212 / rf8-W64A, rf*-

W64A; rf8-W64A, rf*-W64A / rf8-W64A, rf*-W64A; Rf8-8703, rf*-W64A / rf8-W64A, rf*-

W64A; and rf8-W64A, Rf*-7212 / rf8-W64A, rf*-W64A).  If Rf8 and Rf* are alleles of one 

locus, the two BC1 families would be derived from an individual with the genotype Rf8-

8703/Rf*-7212 and the expected segregation pattern would consist of two genotypes (Rf8-

8703/rf-W64A and Rf*-7212/rf-W64A.  As described above, plants carrying Rf8 and Rf* can 

be distinguished by hybridization of RNA gel blots with the T-st308 and CD1721 probes.  

When hybridized with T-st308, all fifty-three individuals displayed either the 1.42-kb or the 

1.40-kb transcripts (χ
2

1:0 =0 < χ
2

1, 0.05 =3.84, p-value > 0.05).  Twenty-five of these 

individuals hybridized to the 1.42-kb transcript when hybridized with the probe CD1721,



 

 

 

3
8
 

 

Table 4.  Chi-square test of the expected and observed outcome of linkage test of Rf8 and Rf* 

  T-st308
†
 CD1721

†
 

Assumptions
†
   

No. of progeny 

accumulating Rf8- and/or 

Rf*- mediated T-urf13 

transcripts    

No. of progeny accumulating 

Rf8- or Rf*- mediated T-urf13 

transcripts 
 

   Rf8 or Rf* rf8 or rf*
‡
 χ

2
   Rf8 Rf*

§
 χ

2
 

Independent Expected (3:1) 39.7 13.3 17.6 Expected (1:1) 26.5 26.5 0.17 

Allelic Expected (1:0) 53 0 0 Expected (1:1) 26.5 26.5 0.17 

  Observed 53 0  Observed 25 28  
 †

Under the assumption of independence, probe T-st308 would detect a 3:1 segregation for the presence of Rf8- and/or Rf*- 

mediated T-urf13 transcripts (Rf8-8703, Rf*-7212 / rf8-W64A, rf*-W64A; Rf8-8703, rf*-W64A / rf8-W64A, rf*-W64A; and rf8-

W64A, Rf*-7212 / rf8-W64A, rf*-W64A) to the absence of Rf8- and/or Rf*-mediated T-urf13 transcripts (rf8-W64A, rf*-W64A / 

rf8-W64A, rf*-W64A).  Probe CD1721 would detect a 1:1 segregation for the presence of Rf8- mediated T-urf13 transcripts and the 

presence of Rf*- mediated T-urf13 transcripts (Rf8-8703/rf-W64A or Rf*-7212/rf-W64A).  Under the assumption of allelism, probe 

T-st308 would detect presence Rf8- or Rf*- mediated T-urf13 transcripts to the inability to detect the Rf*- mediated T-urf13 

transcripts. 

‡
Indicates these individuals do not accumulate any Rf-mediated novel T-urf13 transcripts. 

§
Indicates these individuals accumulate the Rf*-mediated T-urf13 transcripts, but cannot be detected by CD1721 probe. 
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Table 5. Fertility summary of the 1997 and 2008 rf8 mapping population 

  
Progenitor 

Fertility 

Phenotype Progeny Rows 

No. of plants with the 

indicated phenotypes 
Total No.        

of Plants Progenitor
†
 S "S" 

95 3233-2 "S" 97 2219-2226 118 44 166 

      

97 2220-11 "S" 08 7243-7247 167 14 183 

97 2220-12 "S" 08 7248-7250,          

08 7301-7302 

179 14 194 

97 2220-17 S  08 7303-7307 117 7 125 

97 2220-22 "S" 08 7308-7312 147 14 161 

97 2221-3 S  08 7313-7316 129 32 163 

97 2222-15 "S" 08 7327-7331 163 25 188 

97 2222-3 S 08 7322-7326 162 12 174 

97 2223-15 "S" 08 7332-7336 175 4 179 

97 2224-3 "S" 08 7337-7341 164 12 176 

97 2225-1 S  08 7342-7346 172 17 189 

    2008 Total: 1575 151 1731 

†
 Progenitor plants are (T) Rf8-8703/rf8-W64A crossed by (N) rf8-W64A/rf8-W64A.  The 

genotype of all the progenitors was inferred by presence of the 1.42/0.42-kb T-urf13 

transcripts. 

 

observation that fertility was environmentally sensitive; if the temperature was cool (24-

28°C) during tassel development prior to anthesis, there was a high probability that plants 

with the potential for fertility would be fertile, whereas, if the temperature was hot (29-34°C) 

during the same period, plants with the identical genotype would be sterile (Dill et al., 1997).  

In order to further characterize these phenomena in the 2008 population, 126 partially male-

fertile plants were genotyped for the tightly linked markers, csu811_p9 and umc36_p10.  At 

the time of this analysis, it was believed csu811_p9 and umc36_p10 were the flanking 
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markers for Rf8.  Since it was thought that Rf8 was incompletely penetrant, it was expected 

that most or all partially male-fertile plants in the 2008 population would carry the dominant 

Rf8-8703 allele and would be heterozygous (Rf8-8703/rf8-W64A) for the tightly markers.  

However, the plants displayed a 1:1 segregation (χ
2

1:1 = 0.008; P = 0.93) for these two 

markers—5 were recombinant, 61 were heterozygous (Rf8-8703/rf8-W64A), and 60 were 

homozygous recessive (rf8-W64A/rf8-W64A).   

Because a 1:1 genotypic segregation was not expected in the partially fertile plants, 

we designed an experiment to test the partially fertile and sterile plants for the Rf8-associated 

transcripts.  One-hundred eighty plants that were selected based on prior knowledge of their 

genotype score and fertility phenotype were assayed for presence of Rf8-associated 

1.42/0.42-kb T-urf13 transcripts.  Table 6 and Figure 6 show co-segregation of partially male 

fertile and male sterile plants with and without the Rf8-associated transcripts.   Of the 44 

partially male fertile plants, 17 individuals did not contain the 1.42/0.42-kb transcripts while 

27 individuals displayed the 1.42/0.42-kb transcripts.  Of the 136 male sterile plants, 48 did 

not contain the 1.42/0.42-kb transcripts while 88 displayed the transcripts.  The findings that 

partially male fertile individuals are segregating 1:1 for tightly linked markers and at least 17 

of these partially male fertile plants do not display the transcripts suggest that fertility 

restoration could be under the control of additional unlinked locus.  This suggests fertility 

and transcript accumulation could be uncoupled and therefore Rf8 may not be incompletely 

penetrant as postulated previously.  These observations further imply that accumulation of 

Rf8-associated T-urf13 transcripts is not necessary or sufficient for fertility restoration.   
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Table 6. Segregation of the 1.42/0.42-kb T-urf13 transcripts and partial male fertility 

T-urf13 transcript 

accumulation 

No. of partially 

male fertile plants 

No. of male 

sterile plants Total 

1.42/0.42 kb present 27 88 115 

1.42/0.42 kb absent 17 48 65 

Total 44 136 180
†
 

†
Plants are a subset of the 2008 mapping population.  Plants were chosen for RNA blot 

analysis based on prior knowledge of their genotype scores and fertility phenotype. 

 

Molecular marker genotypes in the rf8 region segregate as expected but fertility 

phenotypes do not 

In order to determine the number of factors responsible for transcript accumulation 

and the observed fertility phenotypes, segregation data was examined.  To test the hypothesis 

that rf8 is a single locus, tightly linked genotypic markers should segregate 1:1 for 

heterozygous and homozygous recessive in a backcrossed population.  Table 7 demonstrates 

that the P value for segregation of the tightly linked PCR marker 66902p1 was greater than 

0.05, and therefore not significantly different from a 1:1.  Marker 66902p1 was chosen 

because at the time of the analysis, it was believed to be the distal flanking marker.  All 

progenitor plants of the 2008 population displayed the Rf8- associated transcripts and were 

heterozygous for RFLP markers csu811 and umc36. Progeny from one progenitor, 97 2220-

22, did not segregate for 66902p1. This could be explained by a crossover occurring at 

meiosis in the 97 2220-22 plant between 144635p4 and 66902p1.  The adjusted population 

total listed in Table 7 removes these progenies. 

Dill (1997) reported environmental sensitivity in Rf8 plants.  Greater anther exertion 

is observed at lower temperatures while less is observed at higher temperatures.  Segregation 
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for fertility categories in the 2008 mapping population is reported in Table 5.  This 

population displayed a ratio of 1:10 (χ21:10 = 0.244; P = 0.62) partially fertile to sterile 

plants.  This ratio does not align with the hypothesis of one, two, three, or four completely 

dominant, independently assorting genes, however flowering is a complex process and other 

phenomena are likely. A 1:10 ratio lies between a 3-gene test cross (1:7) and a 4-gene test 

cross (1:15). Linkage, additivity, epistatis, or incomplete dominance could be involved in 

skewing a standard ratio to 1:10. 

Table 7. Genotypic segregation of PCR marker 66902p1 in the Rf8 population 

  

Progeny Rows 

No. of plants with the 

indicated 66902p1 score 

 

 

Progenitor
†
 Heterozygous Recessive χ

2
1:1 P  value 

97 2220-11 08 7243-7247 60 67 0.386 0.535 

97 2220-12 

08 7248-7250,          

08 7301-7302 33 41 0.865 0.352 

97 2220-17 08 7303-7307 37 42 0.316 0.574 

97 2220-22
‡
 08 7308-7312 0 121 121.000 0.000 

97 2221-3 08 7313-7316 34 47 2.086 0.149 

97 2222-15 08 7327-7331 54 71 2.312 0.128 

97 2222-3 08 7322-7326 82 67 1.510 0.219 

97 2223-15 08 7332-7336 61 67 0.281 0.596 

97 2224-3 08 7337-7341 57 76 2.714 0.099 

97 2225-1 08 7342-7346 43 51 0.681 0.409 

 Adjusted Total
§
: 461 529 4.671 0.792 

†
All progenitor plants were crossed by (N) W64A to derive the 2008 plants. 

‡
Progeny did not segregate for marker 66902p1, however 76755p2 segregated 47 

homozygous to 28 heterozygous; P value = 0.028.  This can be explained by a crossover 

event happing between 144635p4 and 66902p1 during meiosis in plant 97 2220-22. 

§
Total reported is excluding progeny of 97 2220-22 which did not segregate for 66902p1.  

Eight degrees of freedom were used to calculate the adjusted total P value. 
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Effect of genetic background on Rf8-mediated fertility 

The observation was made from 1994 to 2000 that fertility of plants carrying Rf8 

decreased with each successive generation backcrossed to (N) rf8-W64A/rf8-W64A.  Starting 

in 2000, plants were crossed by (N) wx1-m8 in addition to (N) W64A (see Figure 1) in order 

to test if the wx1-m8 background would increase fertility compared to (N) W64A.  As shown 

in Table 8, five generations were observed for fertility in our 2009 summer Ames nursery. 

When backcrossed to (N) W64A, fertility decreased, whereas, crossing to (N) wx1-m8 

increased fertility. A subset of the plants showing fertility, including the one partially male 

fertile plant from the BC4 cross, were used as pollen donors and seed was obtained, 

demonstrating their fertility. The generations tested generally displayed the expected trend of 

increased fertility with greater amounts of (N) wx1-m8 in the pedigree as opposed to (N) 

W64A.  This is suggestive of other factors involved in fertility present in the background of 

(N) wx1-m8 yet absent in the background of (N) W64A. 

Delay of fertility in partially male-fertile plants 

In addition to the background affecting the amount of fertility in Rf8 plants, the 

timing of anther exertion affects the amount of fertility observed.  The observation was made 

by Schnable and Wise (1994) that partially male fertile rf1/rf1, Rf2/Rf2 plants accumulate 

novel T-urf13 transcripts (later characterized as the 1.42/0.42-kb Rf8-associated transcripts 

by Dill et al. (1997) and flower one to two weeks later than near-isogenic siblings.  To test if 

mostly male fertile plants flower earlier than partially male fertile plants, five generations 

were grown and observed in 2009.  All plants were observed daily for exertion of anthers.  

Four generations, BC5TC1, BC5TC2, BC6TC1, and BC6TC2, segregated for three of the fertility 

categories—sterile, partially male fertile, and mostly male fertile.  As shown in Table 9, the 
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Table 8.  Phenotypic ratios associated with various amounts of backcrossing 

  Parental 

Genotype 

Pollen 

Donor
‡ 

Parental 

Fertility 

Phenotype 

Parental Transcript 

Accumulation 

2009 

Progeny 

Rows 

No. of plants 

with the 

indicated 

phenotypes 

Total 

No. 

of 

plants Cross
†
 S "S" "F" 

08 7330-1 / 7319 BC4 (N) W64A S  1.42/0.42 present 8132, 8136, 

8147, 8148 

53 1 0 54 

01 4136-4  / 4018 BC6TC1 (N) W64A "S"  1.42/0.42 present 8123, 8126, 

8130, 8145 

23 20 11 54 

02 5230-21 / 5229-3 BC6TC2 (N) wx1-m8 "S"  1.42/0.42 present 8131, 8141, 

8146, 8150 

8 18 22 48 

00 3437-1 / 3446 BC5TC1 (N) wx1-m8 NA
§
  1.42/0.42 present 8124, 8133, 

8140, 8142 

7 23 17 47 

01 4136-3 / 4149 BC5TC2 (N) wx1-m8 "S"  1.42/0.42 present 8135, 8137, 

8139, 8144 

13 20 2 35 

†
Crosses are diagrammed in Figure 1 and were planted in 2009. 

‡
Pollen donor lines are listed, which correspond to the second plant number  in the Cross column. 

§
Parental fertility phenotype not available. 

4
6
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average day after planting to the first flowering (DAPFF) was calculated for all cross types, 

with DAPFF defined as the first day an exerted plump yellow anther was observed.  A two-

tailed, paired t test was used to calculate significance between flowering time of partially 

fertile and mostly fertile plants.  Within a given genotype, all mostly male fertile plants 

showed a significantly earlier DAPFF of flowering than the partially male fertile plants.  

Flowering in 2009 was delayed by 3.7 to 2.4 days depending on the genotype.  This could be 

explained by other factors responsible for flowering time segregating in the partially fertile 

and mostly fertile plants.  These results suggest that there is another factor in the genome 

responsible for the differences observed in the partially fertile and mostly fertile plants. 

Table  9. Average DAPFF in partially male-fertile and mostly male-fertile plants 

Genotype Phenotype 

Average DAP of 

flowering P value 

BC5TC1 
Mostly fertile 63.9 

0.0014** 
Partially fertile 67.3 

BC5TC2 
Mostly fertile 67.5 

0.0092** 
Partially fertile 70.0 

BC6TC1 
Mostly fertile 66.5 

0.0030** 
Partially fertile 68.9 

BC6TC2 
Mostly fertile 65.4 

0.0113** 
Partially fertile 68.1 

Mostly male fertile plants flowered significantly earlier than partially male fertile plants of a 

given genotype. 

 

Discussion 

rf8 is located in a 4.56 Mb region on 2L 

Understanding cytoplasmic male sterility has a clear economic advantage.  The 

production of hybrid maize seed would benefit from a viable CMS system.  The precise 
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mechanisms of CMS and fertility restoration need to be uncovered.  Mapping the restorers of 

fertility with easily assayed molecular markers is a step towards the understanding of fertility 

restoration because individual factors can then be tracked in the progeny of various crosses.   

Here we demonstrate rf8 is located in the 4.56 Mb region on 2L between PCR markers 

76755p2 and 135087p1 corresponding to contig 108 in Maizesequence.org release 4a.53. 

Dill et al. (1997) reported Rf8 was incompletely penetrant based on fertility data and 

transcript accumulation of 79 individuals.  All partially male fertile plants in their study 

showed the presence of the 1.42/0.42-kb transcripts.  However, our results demonstrate the 

partially male fertile individuals in the 2008 mapping population segregate 1:1 for tightly 

linked genotypic markers and 17 of these did not display the Rf8-associated transcripts.  

Thus, our results do not coincide with the incomplete penetrance conclusion of Dill et al. 

(1997).  Rf8 is responsible for transcript accumulation while fertility appears to be at least 

partially controlled by other genes.  Given the existence of partially male fertile individuals 

without the 1.42/0.42-kb transcripts, transcript presence does not appear to be necessary or 

sufficient for fertility restoration.  This could indicate the presence of at least one other factor 

in the genome responsible for partial fertility restoration. 

To test the hypothesis that genetic background affects fertility, five generations of Rf8 

plants were grown in 2009.  The fertility observations suggest a difference in the 

backgrounds of W64A and wx1-m8 because plants reintroduced with wx1-m8 displayed 

greater fertility.   This could be interpreted as wx1-m8 harboring other unlinked genes 

favorable to fertility that W64A does not possess.  In order to test for differences between 

partially fertile and mostly fertile plants, the day after planting to the first flowering (DAPFF) 

was recorded.  This demonstrated that partially fertile plants flower significantly later than 
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mostly fertile plants.  This suggests the presence of other factors segregating for the timing of 

flowering.  

Clusters of linked restorer of fertility genes are conserved across plant taxa 

Fine mapping of ZmRf8 (T cytoplasm) as well as ZmRf3 (S cytoplasm) suggest both 

genes map to the same cluster of PPR genes on 2L.  The phenomenon of linked restorer 

genes is not unique to maize (see Table 10).  Rice contains a PPR cluster spanning 450 kb on 

chromosome 10L that contains six Rf genes that restore four different cytoplasms (Tan et al., 

2010).  OsRf4 and OsqRf-10-2 restore WA and DA cytoplasm, respectively, which are 

characterized by sporophytic restoration (Xie et al., 2002; Yao et al., 1997).  OsRf1a and 

OsRf1b restore BT cytoplasm, whereas OsRf5 and OsRf6 restore HL cytoplasm (Akagi et al., 

2004; Komori et al., 2004; Liu et al., 2004; Wang et al., 2006).  Both BT and HL cytoplasms 

are characterized by gametophytic restoration.  This rice 10L locus is analogous to the maize 

2L locus.  Both species contain linked Rf genes capable of restoring cytoplasms with 

different modes of restoration.  Similar to rice and maize, cotton has two linked Rf genes, 

GhRf1 and GhRf2.  These genes restore two different cytoplasms that also utilize different 

modes of restoration.  GhRf1 sporophyticly restores D2 cytoplasm while GhRf2 

gametophyticly restores D8 cytoplasm (Meyer, 1975; Zhang and Stewart, 2001).  Two 

studies have mapped these genes within 1 cM of each other (Wang et al., 2007; Wang et al., 

2009).  Likewise, common bean (Phaseolus vulgaris) contains two linked fertility restorer 

genes PvFr and PvFr2 on linkage group K (He et al., 1995; Jia et al., 1997).  Interestingly, 

sorghum, maize’s closest relative, does not contain PPR clusters around its unlinked Rf 

genes.  SbRf1 and SbRf2 both are lone PPR encoding genes (Jordan et al., 2010; Klein et al., 
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2005).  Thus, precedent exists for linked Rf genes to exist in one PPR cluster capable of 

restoring multiple cytoplasms characterized by various modes of restoration. 

Canola (Brassica napus) and petunia (Petunia hybrida) contain Rf genes present in 

PPR clusters containing only one known Rf gene and multiple pseudogenes.  BnRfo of canola 

is located in a cluster with two other PPR encoding genes (Brown et al., 2003; Feng et al., 

2009).  Phrf-PPR592 of petunia is adjacent to another PPR gene, PhPPR591 (Bentolila et al., 

2002; Bentolila et al., 1998).  The nonrestoring allele of Phrf-PPR592 contains a promoter 

deletion and most likely a recombination event involving similar PPR genes (Bentolila et al., 

2002).  Currently, it is unknown if sunflower (Helianthus annuus) contains linked Rf genes 

residing in a PPR cluster.  HaRf1 restores PET1 cytoplasm in sunflower, however the 

landscape of this fertility locus needs to be elucidated (Yue et al., 2010). 

The mapping of ZmRf8 in this study places it in a PPR cluster on 2L.  Fine mapping 

of ZmRf3 for S cytoplasm maize positions ZmRf3 4.3 cM distal to whp1 (Kamps and Chase, 

1997).  Further investigations of the whp1 region revealed a cluster of rice OsRf1-orthologus 

PPR genes in B73 (Xu et al., 2009).  This is the same PPR cluster to which ZmRf8 maps.  It 

is likely that ZmRf3 and ZmRf8 reside in the same cluster of PPR encoding genes.   

ZmRf8’s molecular phenotype is the accumulation of the additional 1.42/0.42-kb T-

urf13 transcripts.  Based on this phenotype, the predicted function of ZmRf8 is RNA editing 

or cleavage.  PPR encoding genes are the most promising candidates because of previous 

cloned restorer of fertility genes and the molecular phenotype of Rf8.  We have mapped 

ZmRf8 to a region on 2L that contains seven PPR encoding genes.  Fujii et. al. (2011) 

identified Rf-like (RFL) PPR genes in many species.  There are five RFL-identified annotated 

genes in maize B73.  Finer mapping in the region containing the PPR encoding genes could 
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elucidate whether ZmRf3 and ZmRf8 map to the same RFL PPR encoding gene.  If ZmRf3 

and ZmRf8 are alleles, this would be one of the first Rf gene with alleles capable of restoring 

two different types of cytoplasm with different modes of restoration.  Even if they are not 

alleles, these loci will provide insight into the evolution of CMS/Rf systems.  Clearly this 

complex locus is a hotspot for fertility restoration. 
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Table 10. Comparisons of species and their fertility restorer genes. 

Species Cytoplasm 

Mode of 

Restoration 

Restorer 

Genes 

Gene 

Location Reference 

Oryza 

sativa              

(Rice) 

WA Sporophytic OsRf4 10L (Yao et al., 1997) 

DA Sporophytic Osq-Rf-10-2 10L (Xie et al., 2002) 

BT Gametophytic 
OsRf1a, 
OsRf1b 

10L 
(Akagi et al., 2004; 

Komori et al., 2004; Wang 

et al., 2006) 

HL Gametophytic OsRf5, OsRf6 10L (Liu et al., 2004) 

Zea mays                            

(Maize) 

T Sporophytic 

ZmRf1 3 (Schnable and Wise, 1994) 

ZmRf2 9S (Schnable and Wise, 1994) 

ZmRf8, 
ZmRf* 

2L (Pei, 2000) 

S Gametophytic ZmRf3 2L 
(Kamps and Chase, 1997; 

Xu et al., 2009) 

Gossypium 

hirsutum 

(Cotton) 

D2 Sporophytic GhRf1 D5 (Meyer, 1975; Wang et al., 

2007; Wang et al., 2009; 

Zhang and Stewart, 2001) D8 Gametophytic GhRf2 D5 

Sorghum 

bicolor  

(Sorghum) 

A1 Sporophytic 
SbRf1 SBI-08L (Klein et al., 2005) 

SbRf2 SBI-02 (Jordan et al., 2010) 

Brassica 
napus  

(Canola) 

Ogura Sporophytic BnRfo
†
 CN19 

(Brown et al., 2003; Feng 

et al., 2009) 

Petunia 
hybrida   

(Petunia) 

RM Gametophytic Phrf-PPR592 4 
(Bentolila et al., 2002; 

Bentolila et al., 1998) 

Phaseolus 

vulgaris  
(Bean) 

Sprite NA
‡
 PvFr, PvFr2 K 

(He et al., 1995; Jia et al., 

1997) 

Helianthus 

annuus  

(Sunflower) 

PET1 Sporophytic HaRf1 13 (Yue et al., 2010) 

†
Three research groups cloned this gene simultaneously and assigned different names.  

Brown et al. (2003) named it Rfo, Koizuka et. al. (2003) named it orf687, and Desloire et. al. 

(2003) named it Ppr-B.  For simplicity, this manuscript refers to it as BnRfo. 

‡
The Fr-mediated restoration of bean is permanent.  The presence of Fr causes the permanent 

elimination of the mitochondrial sterility-associated gene pvs from reproductive tissue (He et 

al., 1995). 
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CHAPTER 3. GENERAL CONCLUSIONS 

Cytoplasmic male sterility is a unique system to study nuclear-plastid genome 

interactions.  The fact that CMS is found in so many different species, points to the 

importance of mitochondria in male gamete development.  The sequence of T-urf13 is also 

very unique.  Multiple recombinations of mitochondrial genes are needed to derive its 

sequence.  Here we show rf8 maps to a 4.56 Mb region on the long arm of chromosome 2 in 

contig 108 near whp1.  Partially male-fertile plants segregated for the presence or absence of 

the Rf8-associated transcripts, indicating that presence of the 1.42/0.42 kb transcript is not 

necessary for anther exertion.  Previously, Rf8 was reported to be incompletely penetrant for 

fertility restoration (Dill et al. 1997).  A new, larger data set demonstrating that partially 

fertile plants segregate for the presence or absence of the Rf8-associated transcripts indicate 

that presence of the 1.42/0.42 kb transcripts is not necessary for anther exertion.  Thus, 

fertility appears to be controlled by at least one other factor in the genome. 

rf3 of S cytoplasm and rf* of T cytoplasm also map near whp1 indicating a fertility 

hotspot on 2L.  An allelism test between Rf8 and Rf3 would increase our understanding of 

this locus.  It would be very interesting if genes located very close could restore two different 

types of cytoplasm with different modes of restoration.  T cytoplasm is sporophytic while S 

cytoplasm is gametophytic.  Understanding the genes in this locus would help uncover the 

mechanism of fertility restoration for cytoplasmic male sterility.   

Future studies could also include searching for the cause of fertility in these Rf8 

plants.  Since fertility and 1.42 kb transcript accumulation did not cosegregate, there might 

be more than one locus responsible for partial male fertility.  A quantitative trait loci study 

could be used to find other unlinked fertility loci in the population.  This leads into another 
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question.  With such similar molecular phenotypes, why do Rf1 and Rf8 differ in the ability 

to restore fertility to T cytoplasm plants?   

A bioinformatics approach could be taken to locate candidate genes for Rf1 and Rf8.  

Genes with RNA editing, cleavage, and stabilization functions especially PPR genes are the 

most likely candidates.  Even though B73 either contains the recessive alleles or does not 

contain these loci, regions suggesting gene duplication could be of interest.  It is interesting 

to note that maize’s close relative, sorghum, has a different subclass and locus structure of its 

Rf gene.  Elucidating the loci in maize and comparing them to sorghum will yield clues to the 

evolution of the CMS/Rf system. 
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APPENDIX A.  LIST OF RECOMBINANT PLANTS 

Table 1.  List of recombinant 2008 Rf8 plants including plants with RNA gel blot 

analysis 
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97 2221-3 / 2202 7316-16 "S" B2 --3 B B B 

97 2221-3 / 2202 7317-36 "S" B -- B B B B B B B 

97 2222-3 / 2149 7325-39 "S" B -- B B B B B B B 

97 2224-3 / 2150 7339-28 "S" B -- B B B B B 

97 2225-1 / 2228-8 7346-34 "S" B -- B B B B B B 

97 2220-11 / 2150 7245-11 "S" -- B B B B H H 

97 2220-12 / 2228-11 7249-39 "S" -- B B B B B B B 

97 2220-12 / 2228-11 7301-20 "S" -- B B B 

97 2221-3 / 2202 7314-28 "S" -- B B B B B B 

97 2221-3 / 2202 7313-31 "S" -- B B B B 

97 2222-15 / 2228-15 7331-17 "S" -- B B B B B B H 

97 2222-3 / 2149 7323-2 "S" -- B B B H H H H H 

97 2223-15 / 2230 7334-42 "S" -- B B B B B 

97 2224-3 / 2150 7337-2 "S" -- B B B B B 

97 2224-3 / 2150 7337-3 "S" -- B B B B B 

97 2224-3 / 2150 7341-1 "S" -- B X 

97 2225-1 / 2228-8 7346-35 "S" -- B B B B 

97 2225-1 / 2228-8 7342-11 S B -- A H H H H 

97 2220-11 / 2150 7245-16 S B -- B B H X X 

97 2222-3 / 2149 7322-16 S B -- B H H H H 

97 2223-15 / 2230 7332-28 S B -- B B H X 

97 2225-1 / 2228-8 7346-16 S B -- B B H H H 

97 2225-1 / 2228-8 7346-37 S B -- B H H H 

97 2225-1 / 2228-8 7346-38 S B -- B H H H 

97 2220-11 / 2150 7244-11 S B -- B B A H B B H H 

97 2220-17 / 2202 7303-19 S B -- B H X 

97 2220-17 / 2202 7307-17 S B -- B X X 

97 2222-3 / 2149 7325-37 S B -- B H X 

97 2222-3 / 2149 7323-9 S B -- B H H 

97 2224-3 / 2150 7338-37 S B -- B B B B H H 

97 2224-3 / 2150 7339-17 S B -- B B B 

97 2220-11 / 2150 7245-1 S H -- B B B B B 
97 2220-11 / 2150 7247-15 S H -- B B B B 
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Table 1. (continued) 
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97 2220-22 / 2228 7309-20 S H -- B B B B B 

97 2220-22 / 2228 7310-7 S H -- B B B B B 

97 2222-3 / 2149 7324-31 S H -- B B B B 

97 2225-1 / 2228-8 7343-20 S H -- B B B B B 

97 2225-1 / 2228-8 7343-4 S H -- B B B B B 

97 2221-3 / 2202 7317-35 S H -- B B B B 

97 2221-3 / 2202 7314-27 S H -- C B B 

97 2220-11 / 2150 7245-25 S -- B H 

97 2220-11 / 2150 7244-31 S -- B B B B B B B X H 

97 2220-11 / 2150 7243-11 S -- B B H H 

97 2220-11 / 2150 7244-3 S -- B B B B B B 

97 2220-12 / 2228-11 7250-25 S -- B H H X 

97 2220-17 / 2202 7306-9 S -- B B B B B B 

97 2221-3 / 2202 7314-15 S   -- H B B 

97 2221-3 / 2202 7315-11 S -- H A H A H H H 

97 2222-15 / 2228-15 7329-30 S -- B B B B B B H H 

97 2222-15 / 2228-15 7329-34 S -- B B B B B B 

97 2222-15 / 2228-15 7330-24 S -- B B B B H B B 

97 2222-15 / 2228-15 7331-6 S -- B B B B B B B 

97 2222-15 / 2228-15 7330-13 S -- B B B B B B 

97 2222-3 / 2149 7326-20 S -- B B B B 

97 2222-3 / 2149 7325-15 S -- B B B B H H 

97 2222-3 / 2149 7326-16 S -- B B B B C B C B 

97 2222-3 / 2149 7326-29 S -- B B B B B C B 

97 2223-15 / 2230 7334-27 S -- B B B B H 

97 2223-15 / 2230 7334-41 S -- B B B B B B H H 

97 2225-1 / 2228-8 7342-17 S -- B B B B B B H H 

97 2225-1 / 2228-8 7345-22 S -- B B B B B B H H 

97 2225-1 / 2228-8 7344-23 "S" B + A H H X 

97 2220-11 / 2150 7244-26 "S" H + H X A H H H 

97 2220-11 / 2150 7244-1 "S" H + H X A H H X 

97 2220-22 / 2228 7309-25 "S" H + B B B B B B 

97 2220-22 / 2228 7310-15 "S" H + B B B B B B B 

97 2220-22 / 2228 7312-38 "S" H + B B B B B B 

97 2222-3 / 2149 7322-26 "S" H + H H A H H H H 

97 2220-12 / 2228-11 7302-28 "S" + X H 
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Table 1. (continued) 
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97 2220-12 / 2228-11 7302-30 "S" + X H 

97 2220-17 / 2202 7305-20 "S" + B B B B B B 

97 2220-17 / 2202 7305-10 "S" + H H A   B B B 

97 2220-17 / 2202 7305-18 "S" + H X H H X 

97 2220-22 / 2228 7310-2 "S" + B B B B B B B 

97 2220-22 / 2228 7310-5 "S" + B B B B B B 

97 2221-3 / 2202 7315-21 "S" + H H A H H H 

97 2221-3 / 2202 7315-2 "S" + H X 

97 2221-3 / 2202 7316-22 "S" + H X 

97 2222-15 / 2228-15 7328-5 "S" + H B B 

97 2222-15 / 2228-15 7331-5 "S" + H H H H H H 

97 2222-15 / 2228-15 7329-35 "S" + H H H H H H 

97 2222-15 / 2228-15 7331-19 "S" + B B B B B 

97 2222-15 / 2228-15 7331-7 "S" + H H H H 

97 2224-3 / 2150 7338-1 "S" + H H H H H 

97 2225-1 / 2228-8 7346-30 "S" + B B B B B B 

97 2225-1 / 2228-8 7342-21 "S" + X 

97 2225-1 / 2228-8 7346-19 "S" + H H H 

97 2220-11 / 2150 7244-7 S B + A H H X 

97 2220-12 / 2228-11 7248-27 S B + A H H H X 

97 2221-3 / 2202 7317-27 S B + A H H H H 

97 2222-3 / 2149 7323-28 S B + A H H H H 

97 2222-3 / 2149 7323-6 S B + A H H H H 

97 2222-3 / 2149 7324-12 S B + A H H H H 

97 2222-3 / 2149 7326-15 S B + A H H X 

97 2223-15 / 2230 7333-30 S B + A H H H H H 

97 2225-1 / 2228-8 7346-24 S B + A A B C 

97 2225-1 / 2228-8 7343-29 S B + A H H H H 

97 2225-1 / 2228-8 7344-1 S B + A H H H H 

97 2225-1 / 2228-8 7344-25 S B + A H H X 

97 2225-1 / 2228-8 7344-8 S B + A H H X 

97 2225-1 / 2228-8 7342-8 S B + A H H X 

97 2225-1 / 2228-8 7344-21 S B + A H H X 

97 2220-17 / 2202 7307-9 S B + H H X X 

97 2221-3 / 2202 7317-29 S B + H H H 

97 2222-3 / 2149 7323-30 S B + H H H 
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Table 1. (continued) 
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97 2220-11 / 2150 7247-23 S H + A H B B 

97 2220-12 / 2228-11 7248-10 S H + A H B B C 

97 2220-17 / 2202 7303-24 S H + A H B B B 

97 2220-22 / 2228 7308-12 S H + A H B B B 

97 2220-22 / 2228 7308-14 S H + A H B B B 

97 2220-22 / 2228 7308-25 S H + A H B B B 

97 2220-22 / 2228 7308-5 S H + A H B B B 

97 2220-22 / 2228 7309-1 S H + A H B B B 

97 2220-22 / 2228 7309-14 S H + A H B B B 

97 2220-22 / 2228 7311-19 S H + A H B B B 

97 2220-22 / 2228 7311-6 S H + A H B B B 

97 2220-22 / 2228 7311-8 S H + A H B B 

97 2220-22 / 2228 7312-16 S H + A H B B B 

97 2220-22 / 2228 7309-11 S H + A H B B B 

97 2220-22 / 2228 7309-22 S H + A H B B B 

97 2220-22 / 2228 7312-30 S H + A H B B 

97 2220-22 / 2228 7308-4 S H + A B B B 

97 2220-22 / 2228 7312-29 S H + A B B B 

97 2220-22 / 2228 7312-40 S H + A B B B 

97 2220-22 / 2228 7308-21 S H + A B B B 

97 2221-3 / 2202 7317-34 S H + A H B B B 

97 2221-3 / 2202 7313-15 S H + B B B B C 

97 2220-11 / 2150 7246-16 S H + H B B 

97 2220-11 / 2150 7244-25 S H + H B B 

97 2220-22 / 2228 7308-3 S H + H B B B 

97 2220-22 / 2228 7310-11 S H + H B B B 

97 2225-1 / 2228-8 7344-13 S H + H B B 

97 2220-11 / 2150 7243-5 S + A H H H 

97 2220-12 / 2228-11 7248-13 S + H H A H B B B B 

97 2220-12 / 2228-11 7301-1 S + H H 

97 2220-12 / 2228-11 7301-30 S + H A B B 

97 2220-17 / 2202 7305-2 S + H B 

97 2221-3 / 2202 7314-16 S + H A H H 

97 2222-15 / 2228-15 7329-3 S + H H A H H H B B B 

97 2222-15 / 2228-15 7330-1 S + H H H H H H H 

97 2222-15 / 2228-15 7330-28 S + H H A H B H A 
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Table 1. (continued) 
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97 2222-15 / 2228-15 7331-15 S + H H H H H H H 

97 2222-15 / 2228-15 7330-10 S + H H H H B B 

97 2222-15 / 2228-15 7331-10 S + H H H H 

97 2222-15 / 2228-15 7331-9 S + H A H B B 

97 2222-3 / 2149 7324-33 S + H H A H H H H B B 

97 2222-3 / 2149 7322-24 S + H A H A H B B B 

97 2222-3 / 2149 7325-29 S + H A H H H B B B 

97 2223-15 / 2230 7333-29 S + H H A H H H H 

97 2223-15 / 2230 7335-27 S + H H A H A H H B B 

97 2224-3 / 2150 7337-36 S + H B B 

97 2225-1 / 2228-8 7345-33 S + H B B 

97 2220-12 / 2228-11 7249-11 S + H B B 

97 2220-17 / 2202 7306-19 S + H B B 

97 2222-15 / 2228-15 7329-5 S + H B B B B B B 

97 2222-3 / 2149 7325-14 S + H B 

97 2223-15 / 2230 7335-9 S + H B B 

97 2223-15 / 2230 7333-18 S + H A H H 

97 2224-3 / 2150 7339-29 S + H H H H H 

97 2224-3 / 2150 7337-16 S + H A H A B 

97 2225-1 / 2228-8 7344-2 S + H A H A H H C B 

97 2220-11 / 2150 7245-17 "S" B   A H H X 

97 2225-1 / 2228-8 7345-35 "S" B   H X 

97 2220-11 / 2150 7246-7 S B   H H 

97 2220-17 / 2202 7305-1 S B   H X 

97 2220-17 / 2202 7305-25 S B   H X 

97 2221-3 / 2202 7315-16 S B   H X 

97 2221-3 / 2202 7317-13 S B   H H H 

97 2221-3 / 2202 7317-22 S B   H H H 

97 2222-15 / 2228-15 7327-27 S B   H X 

97 2222-15 / 2228-15 7327-19 S B   H H X 

97 2222-15 / 2228-15 7328-27 S B   H 

97 2222-15 / 2228-15 7328-30 S B   H H X 

97 2222-3 / 2149 7325-27 S B   H H H 

97 2222-3 / 2149 7326-10 S B   H X 

97 2222-3 / 2149 7322-18 S B   H H 

97 2222-3 / 2149 7326-19 S B   H H H 
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97 2222-3 / 2149 7326-3 S B   H H H 

97 2222-3 / 2149 7326-5 S B   H X 

97 2222-3 / 2149 7326-14 S B   H H 

97 2223-15 / 2230 7334-13 S B   H X 

97 2223-15 / 2230 7334-22 S B   H H H 

97 2223-15 / 2230 7334-38 S B   H H A 

97 2225-1 / 2228-8 7345-30 S B   H H H 

97 2222-15 / 2228-15 7331-28 "S" H   B B B B 

97 2223-15 / 2230 7333-3 "S" H   B B B 

97 2220-11 / 2150 7244-28 S H   H B 

97 2220-12 / 2228-11 7250-19 S H   H H B B 

97 2220-22 / 2228 7309-19 S H   B B B 

97 2220-22 / 2228 7310-16 S H   B B B 

97 2220-22 / 2228 7311-29 S H   B B B 

97 2220-22 / 2228 7312-10 S H   B B B 

97 2221-3 / 2202 7317-16 S H   B B B 

97 2222-15 / 2228-15 7331-27 S H   H B B 

97 2222-3 / 2149 7322-11 S H   B B B 

97 2222-3 / 2149 7325-34 S H   B B B 

97 2223-15 / 2230 7332-12 S H   B B 

97 2224-3 / 2150 7340-13 S H   B B B 

97 2224-3 / 2150 7341-15 S H   B B B 

97 2224-3 / 2150 7341-27 S H   B B B 

97 2224-3 / 2150 7341-6 S H   B B B 

97 2225-1 / 2228-8 7346-6 S H   B B B 

97 2220-11 / 2150 7244-9 S   H B B 

97 2220-12 / 2228-11 7250-4 S   B B B B B B H H 

97 2220-12 / 2228-11 7248-38 S   H H B B 

97 2220-12 / 2228-11 7248-15 S   H A H H B B 

97 2220-12 / 2228-11 7249-20 S   A H H H B B 

97 2220-17 / 2202 7305-6 S   B B B B H H H 

97 2222-15 / 2228-15 7330-18 S   B B B B B B H 

97 2222-15 / 2228-15 7331-18 S   B B B B B B H 

97 2222-15 / 2228-15 7328-35 S   H B 

97 2222-3 / 2149 7326-22 S   B B B B B C H 

97 2223-15 / 2230 7335-15 S   B B B B B H H 
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97 2223-15 / 2230 7336-18 S   B H H 

97 2223-15 / 2230 7336-19 S   B H H 

97 2223-15 / 2230 7332-17 S   B B B H 

97 2224-3 / 2150 7337-29 S   X A H H H C C 

97 2224-3 / 2150 7339-21 S   B B B B H H 

97 2225-1 / 2228-8 7342-9 S   B B B B B B H H 

97 2225-1 / 2228-8 7342-7 S   H B 

97 2225-1 / 2228-8 7346-5 S   H A B B 
1
Cross corresponds to (T) Rf8-8703/rf8-W64A x (N) rf8-W64A/rf8-W64A.  All samples in this 

table are from the 2008 mapping population.   

2
Genotype scores are summarized as A = (N) wx1-m8 pattern, B = (N) W64A pattern, H = 

heterozygous pattern, C = heterozygous or B pattern, X = heterozygous or other pattern.   

3
The + and – correspond to the presence or absence of the Rf8-associated 1.42/0.42-kb T-

urf13 transcripts. 
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