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INTRODUCTION 

Heterosis or hybrid vigor is defined as the superiority 

of the cross over the parental mean or over the parent with 

the highest expression of the trait (Robinson and Moll, 

1965). Although the genetic basis of heterosis is still to 

be determined, the phenomenon of hybrid vigor has been 

extensively used for the improvement of yield in maize (Zea 

mays L.) and other crops. Yield heterosis in crosses of 

maize cultivars has been widely reported in areas where 

maize is grown (Hallauer and Miranda, 1988). 

Variety-cross diallels provide information on heterosis 

and heterotic patterns which can be used in forming more 

than one base population. Such populations can be used as 

parents in the first generation crosses for grain 

production, or can be improved under conventional intra-

and inter-population selection schemes, and be a source for 

new promising varieties and superior lines for the 

production of hybrids (Comstock et al., 1949; Pandey and 

Gardner, 1992). 

Extensive work in maize has been done in the Latin 

America tropical lowland areas where most of the maize 

growing areas are localized. Heterosis among lowland maize 

cultivars has been widely investigated and important 

heterotic patterns have been identified (Hallauer et al.. 
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1988). In the highlands of Latin America, however, the 

investigations have been limited. Very little is known about 

the nature of the genetic variability existing among the 

different races and local cultivars growing at altitudes up 

to 3800 m above sea level (masl). 

The highland maize in Latin America is characterized by 

the predominantly floury endosperm-type grain and for the 

semi-soft endosperm type morocho. These types of maize are 

particularly suitable for direct human consumption. Another 

characteristic of this maize is the large grain yield 

potential. Experimental yields over 10000 kg/ha have been 

obtained at 3100 masl in the inter-Andean valleys in central 

Peru. 

The objectives of the present study were to evaluate 

the existence of heterosis and to determine possible 

heterotic patterns among ten cultivars of tropical highland 

maize representing contrasting arrays of morphological and 

agronomic characteristics. 
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LITERATURE REVIEW 

Heterosis 

The term heterosis was proposed by Shull (1914) as a 

word to describe the phenomenon of hybrid vigor resulting 

from the union of different gametes. Shull*s definition of 

heterosis implied that more than gene action was responsible 

for its expression; i.e., heterosis was not only Mendelian 

in origin, but that some interactions between the male 

nucleus and the egg cytoplasm were involved (Whaley, 1944). 

Sedcole (1981) defined heterosis either as the increased 

vigor of the over the mean of the parents or as the 

increased vigor of the over the best parent. Several 

hypotheses have been proposed as an explanation of 

heterosis. Some of the hypotheses were on a genetic basis, 

whereas others were not. Despite the extensive research 

conducted to determine the genetic basis of heterosis it has 

been difficult to prove or disprove the different theories 

(Hallauer and Miranda, 1988). 

Most theories advanced to explain heterosis are 

included in either one of the following categories (Sprague, 

1946; Brieger, 1950; Jinks, 1955; Hallauer and Miranda, 

1988) ; 

physiological stimulation resulting from the union of unlike 

gametes (the overdominance hypotheses), and 
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complementary action of dominant favorable genes of both 

parents, (or the dominance hypotheses). 

The first theory was presented by Shull (1908) under 

the assumption that heterozygosity itself accounts for 

heterosis. East and Hayes (1912) supported this view 

indicating that the stimulus was greater when the characters 

were in heterozygous condition, and the stimulus was 

cumulative, depending on the number of heterozygous factors 

in the organism. This theory was expanded by East (1936) who 

postulated that different alleles when combined in 

hétérozygotes exerted a complementary action, resulting in 

an increment of vigor expressed in those heterozygotes. 

The theory of heterozygosity as the cause of heterosis is 

essentially non-Mendelian. 

Hull (1945) presented a Mendelian explanation of 

heterosis stating that if a heterozygous value exceeds that 

of either parent the corresponding locus should be important 

as a source of hybrid vigor. This is the overdominance 

hypotheses. Under this view, hybrid vigor itself is the 

cause of superiority, which would imply the physiological 

stimulation hypotheses or the obligatory interaction of 

alleles (Brieger, 1950; Sprague, 1953). 

The dominance hypotheses, as a Mendelian explanation of 

heterosis, was first proposed mathematically by Bruce 

(1910), based on the lower number of recessive elements in 
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the hybrid as compared with those of the parents considered 

as one. Hallauer and Miranda (1988) pointed out that the 

main features of Bruce's explanation is that heterosis 

occurs if the parents differ in gene frequency and dominance 

is present. Keeble and Pellew (1910), working with garden 

peas, suggested that the greater vigor generally exhibited 

by the hybrid could be due to the action of dominant 

growth factors in the zygote, provided by the gametes of 

each parent. 

Detractors of the dominance hypotheses of heterosis 

argued that such an explanation was not acceptable because, 

if true, lines as vigorous as the hybrid could be obtained. 

This did not seem to be possible, due to the current belief 

at that time that lines must be weak and lacking in vigor 

(Sprague, 1946). Another argument against the dominance 

hypothesis was that the Fg generation of the hybrid should 

show a skewed distribution due to the 3:1 segregation in 

favor of the dominant alleles. (Hallauer and Miranda, 1988). 

Jones (1917) interpreted heterosis as a result of the 

presence of dominant linked genes. Linkage between favorable 

and unfavorable genes would prevent skewness and the 

recovery of multiple dominant individuals (Richey, 1946). 

Collins (1921) demonstrated that if the number of factors 

controlling a character was more than ten the possibility of 

recovering a completely homozygous dominant individual was 
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very remote, and also that skewness would be difficult to 

detect. And indeed the number of genes controlling the 

expression of complex traits such as vigor, health, and 

productivity, though unknown, must be greater than ten 

(Hallauer and Miranda, 1988). 

The manifestation of heterosis usually depends on 

genetic divergence of the parental populations; 

nevertheless, this concept seems to have its limits in the 

expression of maximum heterosis (Hallauer and Miranda, 

1988). Richey (1922) reported the effect of differences in 

endosperm type for higher yields. He observed that crosses 

between different endosperm types (flours, flints, and 

dents) of maize were superior to crosses of dent varieties. 

On the other hand, Paterniani and Lonnguist (1963) 

indicated that crosses within endosperm types were as 

productive, on the average, as those between endosperm 

types; dent x dent and flour x flour yielded 4.44 and 4.20 

t/ha, respectively, vs. 4.42 t/ha in dent x flour crosses. 

Taking as a premise that genetic differences among 

varieties might arise as a result of geographical isolation, 

Moll et al. (1962) studied the crosses of six maize 

varieties, two from each of three different regions in the 

United States and Puerto Rico. Their results agreed with the 

original classification of the genetic divergence of the 

parental varieties, concluding that greater genetic 
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diversity was associated with greater heterosis in the 

variety cross. In a later study Moll et al. (1965), widened 

the range of genetic divergence, by adding two Mexican races 

to the ones considered in the previous study. They found 

that heterosis in crosses involving Mexican races, 

considered to have higher levels of genetic diversity, was 

less than that observed between varieties considered to be 

less genetically diverse. They concluded that heterosis 

increases with divergence within a restricted range of 

diversity but extremely divergent crosses resulted in a 

decrease in heterotic expression. 

Variety crosses and heterotic patterns 

Before the rediscovery of Mendel's laws at the 

beginning of the present century, maize breeders were aware 

that some crosses between varieties and between species 

resulted in an increased vigor (East and Hayes, 1912) . The 

detrimental effects caused by selfing allogamous crops also 

were known, and that such loss of vigor became restored in 

the progeny once the strains subjected to inbreeding were 

outcrossed. 

Darwin (1877) studied the effects of inbreeding and 

crossing in maize, and concluded that the vigor exhibited 

by the hybrid was the result of uniting gametes, different 

in constitution, and "that cross fertilization is generally 
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beneficial and self-fertilization injurious". Beal (1880) 

tested a series of hybrids between open pollinated 

varieties, suggesting the use of first generation varietal 

crosses as a means of increasing yield. This led to a rather 

extensive study of variety crosses during the early 1900's 

(Lonnguist and Gardner, 1961). 

Richey (1922) summarized data previously reported by 

various investigators on 244 comparisons between first 

generation crosses and the parental varieties in maize. He 

found that 201 crosses (82.4%) yielded more than the 

parental average, and 136 crosses (55.7%) yielded more than 

the better parent. 

Shull (1909) proposed the pure-line method in maize 

breeding. He emphasized that with this method all individual 

plants would have the same complexity and uniformity and 

should produce equal yield of grain. This pure line-method 

would have advantages over methods that selected the more 

heterozygous individuals as parents. Crosses between 

heterozygous parents would produce an offspring with varying 

degree of heterozygosis, which would result in a crop of 

lower average yield than that of the selected pure lines. 

For Shull, the problem was limited to finding the best 

combination of pure lines and the practical use of the 

pure lines in the production of seed. The high cost of 

producing hybrid seed made this method not feasible for 
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large scale planting, which on the other hand was not a 

problem for first generation variety crosses. 

Similar methods to produce hybrid seed from variety 

crosses for commercial planting were outlined by Collins 

(1909) and by East (1909). They advocated the use of variety 

crosses as more feasible to obtain better yields in maize 

though they were greatly concerned about the growing 

expansion of research in studying new methods involving 

inbreeding in maize. East (1909) reported an increase of 

vigor over the parents after testing the first generation 

of 30 maize crosses. Yield was reported for only four 

crosses. Three of the crosses involved inbred parents, which 

on the average were superior in yield as compared with the 

cross of two varieties; i.e., 158 bu/acre (9.88 t/ha) vs. 

124 bu/acre (7.75 t/ha). 

The interest in variety crosses was markedly reduced 

after Jones (1918) proposed the use of double cross hybrids 

to eliminate seed cost as a limiting factor in the use of 

inbreds to produce hybrids. In the 1950s, interest was 

renewed due to the development of quantitative genetics and 

recurrent selection procedures for the improvement of 

breeding populations (Hallauer and Miranda, 1988). 

Evaluation of variety crosses is to provide knowledge on the 

potential of hybrid crosses and heterosis expressed in 

crosses. This information can be used for varieties to be 
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used as parents in the first generation crosses for grain 

production, as base populations in recurrent selection 

programs, as sources of inbred lines to be used in hybrid 

combination, or as materials for the synthesis of varieties 

composites (Comstock et al., 1949; Miranda and Vencovsky, 

1984). 

The identification of heterotic patterns (i.e., known 

crosses between populations having a greater expression of 

heterosis) has been of interest among maize breeders. In the 

United States the most extensively used heterotic pattern is 

that of Reid Yellow Dent by Lancaster Sure Crop (Sprague, 

1984). The concern about the narrowness of the germplasm 

base in the U.S. Corn Belt has influenced researchers to 

explore alternatives to increase the genetic diversity by 

using either exotic germplasm or U.S. Corn Belt germplasm 

not extensively used (Eberhart, 1971; Kauffman et al., 

1982). 

Heterotic patterns are arbitrary and are derived by 

breeders based on experience, breeding, and testing 

(Hallauer et al., 1988). A systematic approach for 

identifying a heterotic pattern and a method of assigning a 

number of varieties showing heterotic response to such 

patterns was described by Kauffman et al. (1982). They 

studied the diallel crosses of nine open pollinated U.S. 

Corn Belt varieties with similar characteristics of yield as 
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varieties per se, damaged plants, and harvest moisture. The 

varieties Midland and Learning were selected to develop a 

heterotic pattern since they combined well with each other 

and with the variety Lancaster. 

In a following study 111 U.S. Corn Belt variety 

accessions were crossed to Midland and Learning (Kauffman et 

al. 1982). Based on the results of trials conducted in three 

years, 27 accessions were assigned to Midland and 48 to the 

Learning group, which was the base to form a Midland type 

composite and a Leaming type composite, respectively. 

Crossa et al. (1987) studied the heterotic effects 

among 13 populations of maize which included five adapted 

U.S. Corn Belt populations, five adapted x exotic (Mexican, 

Caribbean and Brazilian germplasm) populations, two 

composites of adapted and exotic germplasm (lines from 

Canada, France and Yugoslavia), and one exotic population 

(Tuxpeno X Antigua). The .100% U.S. Corn Belt populations had 

the highest yield in crosses (7.57 t/ha), showing 

consistently higher heterosis effects when crossed with all 

others but yielded poorly as parents per se (5.61 t/ha). The 

exotic population ranked second in mean cross yield (7.1 

t/ha) and first as parent per se (7.0 t/ha). 

Mungoma and Pollak (1988) studied ten U.S. Corn Belt 

and exotic maize populations, and reported the cross 

BSSS(R)C10 x Mexican Dent (Tuxpefio) having the highest yield 
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(8.77 t/ha), the highest mid-parent heterosis, and, 

consequently, the best heterotic combination among the ten 

populations for yield. Although those yields were not 

significantly higher than the check (B73 x Mol7) it was 

statistically superior to that of BSSS(R)C10 x Lancaster, 

which represents the widely used heterotic pattern Reid 

Yellow Dent and Lancaster Sure Crop. 

Latin America researchers also had the same concerns of 

extensive use of a few germplasm sources. Paterniani and 

Lonnquist (1963) studied the yield produced by 12 races of 

maize from Brazil, Mexico, Paraguay, and Argentine and their 

respective crosses, thus representing a wide range of 

diversity with respect to origin. The average heterotic 

response of the crosses was 33% relative to the mid-parent 

and 14% relative to the higher yielding parent. They 

identified three races, Itaici (a Paulista dent), Cateto, 

and Carmen (of Tuxpefio origin) as promising for immediate 

use in maize breeding in Brazil. 

Paterniani (1964) studied crosses among Brazilian, 

Colombian, and Mexican lines belonging to the heterotic 

pattern Cateto by TuxpeAo. Crosses of Colombian by Mexican 

lines yielded 55% more than the best available Brazilian 

double cross hybrid. Miranda and Vencovsky (1984) crossed 

nine open pollinated tropical varieties (seven short plant 

varieties and two high yielding varieties) in a complete 
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diallel and evaluated at five locations in 1973 and 1974. 

The highest yielding cross over years and locations was 

Tuxpefio Crema-I x Eto Blanco (5.52 t/ha), which also showed 

the highest heterosis for yield (34.4% over the mid-parent). 

Results of this study led them to conclude that all seven 

short plant varieties can be used to synthesize a new 

population because they all showed a homogeneous heterotic 

pattern in crosses among themselves. 

Crossa et al. (1990) analyzed the results of crossing 

25 different races of Mexican maize evaluated during 1961 to 

1964 at three different elevations above sea level, 

identified as high (2244 m), intermediate (1800 m) and low 

(1300 m) altitude. At the high elevation Conico, Conico 

Norteno, and Chalqueno produced the higher yields (5.24, 

5.27, and 5.41 t/ha., respectively). At the intermediate 

elevation, the best yielding races were Celaya (7.92 t/ha.) 

and Comiteco, Harinoso de Ocho, Maiz Dulce, Tabloncillo and 

TuxpeAo, whose yields ranged from 5.41 to 5.67 t/ha. At the 

low elevation, Harinoso de Ocho (5.67 t/ha.), Pepitilla 

(5.06 t/ha.), and Celaya (4.92 t/ha.) had the best yields. 

Maiz Dulce had higher yields in crosses with Reventador, 

Harinoso de Ocho, and Jala at high elevation, with Celaya 

race at intermediate elevation, and with the lowland race 

Tuxpeno. Cacahuazintle performed well in crosses only at the 

high altitude, yielding 7.05 t/ha in cross with Reventador 



14 

and 6.85 t/ha in cross with Harinoso de Ocho; heterosis was 

over 200% in both crosses. 

Pandey and Gardner (1992), reported the possible 

heterotic combinations for 22 tropical maize populations 

managed by CIMMYT. To determine this, diallei trials 

starting in 1985 were set up based on adaptation, 

maturity, grain color, and protein quality. Evaluations were 

conducted at several locations in Mexico, Central and South 

America, the United States, and Asia. 

The diallel analysis 

The theory of diallel crosses and models to analyze 

them have been proposed and extensively discussed by 

several scientists (Hayman, 1954a and 1954b; Kempthorne, 

1956; Jones, 1965). Originally designed to estimate genetic 

parameters from means of different generational populations 

originated from pairs of homozygous lines, the diallel 

analysis has been widely used by quantitative geneticists to 

determine the nature of gene action involved in the 

expression of quantitative traits, and by plant breeders 

interested in selecting the most promising germplasm for 

their programs (Gardner and Eberhart, 1966). 

In interpreting genetically the results of diallel 

analysis, the following assumptions need to be considered 

(Kempthorne, 1956); 
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normal Mendelian diploid segregation, 

no maternal effects, 

no epistasis, 

an arbitrary number of alleles at each locus, 

no environmental correlation with genotypes, and 

independent distribution of genes between the parents. 

The last assumptions of independent distribution of 

genes between the parents, and no epistasis, were regarded 

by Baker (1978) as critical for proper interpretation of the 

diallel analysis. Neither assumption seems valid in a 

diallel mating scheme involving a relatively small number of 

parents. Independent distribution of genes at n loci cannot 

occur unless a minimum of 2" parents are included in the 

diallel crosses. For maize, estimates of epistasis seem to 

be negligible relative to additive and dominance effects 

(Hallauer and Miranda, 1988). Failure of these assumptions 

could result in biased estimates of general and specific 

combining ability components of variance, and an 

overestimation of the average level of dominance (Baker, 

1978). 

The interpretation of the results obtained from a 

diallel analysis is restricted to the statistical model 

used, whether the parents are considered either as a random 

sample representing the reference population (random model), 

or as a fixed sample where conclusions are to be made solely 



16 

relative to the parents Included in the sample (fixed 

model). In the random model case estimates of genetic 

component of variance can be calculated to determine the 

relative importance of additive and dominance action of the 

genes controlling the expression of the character of 

interest in the reference population. In the second 

situation, estimates of the relative importance of general 

and specific combining ability effects are possible 

(Hallauer and Miranda, 1988}. It also seems reasonable to 

consider a random sample of genotypes as fixed if interest 

is also directed towards the determination of genetic 

effects proper for that sample (Baker, 1978). 

The choice of either model, and whether or not parents 

and reciprocals are included in the analysis, gives rise to 

eight different situations involving different estimation 

procedures and different tests of hypotheses. Griffing 

(1956) examined in detail each analysis grouping them in 

what he named as methods 1, 2, 3, and 4 for random and 

fixed models. 

In maize, early breeding programs were mostly 

interested in evaluating the combined ability of inbred 

lines by means of topcross and single cross tests. This 

unique concept of combining ability was refined by Sprague 

and Tatum (1942), when they first proposed its partition 

into general and specific combining ability (Hallauer and 
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Miranda, 1988). 

The term 'general combining ability' (GCA) is used to 

indicate 'the average performance of a line in hybrid 

combination' when expressed as a deviation from the mean of 

all crosses including that line. 'Specific combining 

ability' (SCA) refers to the performance of single 

combinations on the basis of the average performance of 

the lines involved in that cross. 

Lower estimates of GCA indicate that the line is 

performing similar to the average of all lines in crosses. 

Larger estimates of GCA for a line can arise because it is 

either better or poorer than the rest of the lines in the 

study. This is interpreted as caused by the presence of 

genes that are mostly additive in their effects (Sprague and 

Tatum, 1942). 

Similarly, lower estimates of SCA are taken as an 

indication of an expected performance of a particular 

combination on the basis of the GCA of its parents. Higher 

values of SCA indicate that some crosses were better or 

poorer than expected, also based on the GCA of its component 

parents. Thus, specific combining ability is greatly 

dependent on genes with dominance or epistatic effects 

(Sprague and Tatum, 1942). With the increasing interest in 

variety crosses in the 1950s, methods of evaluation and 

choice of varieties for heterosis also changed from crossing 
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a group of varieties to a common tester variety, to the use 

of the diallel mating design to determine the general and 

specific combining ability of varieties and their crosses 

(Hallauer and Miranda, 1988). 

Methods for evaluating diallel crosses for a fixed set 

of parents and one set of crosses were proposed by 

Griffing (1956), and by Gardner-and Eberhart (1966). 

Griffing's method 2, model 1, allows the partition of 

entries sum of squares in general and specific combining 

ability but does not provide a measurement for heterosis 

effects as does Gardner and Eberhart's analysis II and III. 

On the other hand, analysis III separates the effects of 

both varieties and their crosses on the genetic basis that 

the difference in yield between the parental inbred lines of 

maize and their crosses is considerable, and, therefore, two 

linear models are considered (Gardner and Eberhart, 1966). 

In this respect analysis III is similar to that of Sprague 

and Tatum (1942), and Griffing's method 4, which also can be 

applied to variety crosses (Lonnguist and Gardner, 1961). 

Analysis II of Gardner and Eberhart (1966) is of 

particular interest for maize variety crosses. It maximizes 

the information on variety performance and the expression of 

heterosis of their crosses (Hallauer and Miranda, 1988). The 

analysis gives a single model for varieties and their 

crosses. It also estimates heterosis effects independently 
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Which are further subdivided in its components as defined by 

Hayman (1954a), who suggested that heterosis is attributable 

to an average heterosis (h), to an average contribution of 

each variety in its crosses (ĥ  and hj), and to a specific 

effect after crossing varieties i and j (ŝ j). By testing a 

series of sequential models it is possible to determine the 

Importance of heterosis and its components: 

Model 1; Yij = Mv + %(Vi + Vj); 

Model 2; Ŷ j = + %(V£ + Vj) + Th; 

Model 3; + %(Vi + Vj) + rh + (ĥ  + hj); and 

Model 4: Ŷ j - + %(Vi + Vj) + rh + (ĥ  + hj) + Tŝ j. 

Model 1 assumes no heterosis. Model 2 assumes that 

heterosis is present and it is, on the average, the same for 

all variety crosses. Model 3 assumes that each variety has 

its own unique heterotic effects in all its crosses. Model 4 

assumes in addition, that each cross has its own specific 

heterotic effects (Gardner, 1965). 
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MATERIALS AMD METHODS 

Ten varieties of highland maize from Colombia, 

Ecuador, Mexico, and Peru were considered in this study. A 

brief description of each variety is provided. 

Cacahuazintle is classified as a pre-Columbian exotic 

Mexican race, adapted to elevations between 2200 to 2800 

meters above sea level (m.a.s.l.). Plants are of medium 

height and medium maturity. Kernels have white and floury 

endosperm (Wellhausen et al., 1952). 

ChalgueAo is considered a modern incipient Mexican 

race, adapted to altitudes from 1800 to 2300 m.a.s.l. Plants 

have medium to tall height and medium maturity. Kernels 

have soft, white endosperm. This cultivar is thought to 

be product of the hybridization of Conico and Tuxpefio 

(Wellhausen et al., 1952). 

Conico 7 is an improved version of a pre-historic 

mestizo Mexican race grown at altitudes between 2200 to 2800 

m.a.s.l. Plants are of medium size in height and very early 

in maturity. Kernels have hard white endosperm. Its origin 

is attributed to a hybridization of Palomero and 

Cacahuazintle (Wellhausen et al., 1952). 

Cabuya is classified as a hybrid race adapted to 

elevations between 2100 and 2645 m.a.s.l. in Colombia. 

Plants are medium to tall in size and medium to late 
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maturity. Kernels are white or yellow and have either floury 

or flinty endosperm. It is a hybrid of Sabanero and Clavo 

(Roberts et al., 1957). 

Cacao is also a Colombian hybrid race adapted to medium 

elevations (1300 to 1700 m.a.s.l.). Plants are medium to 

tall in size and early maturity. Kernels have white or 

yellow endosperm. It is believed to be a hybrid of Costefio 

and Sabanero (Roberts et al., 1957). 

INIAP 153 is an Ecuatorian cultivar adapted to 

altitudes between 2200 to 2600 m.a.s.l. Plants are medium to 

tall in height and are medium to late maturity. Kernels are 

floury-flinty and white in color. This cultivar is 

derived from collections of the Zhima ecotype, belonging to 

the race Cuzco Ecuatoriano (Galarza, 1981). 

Morocho Ecuatoriano is a cultivar that includes a large 

number of collections adapted to altitudes from 1700 to 3000 

m.a.s.l. bearing the name Morocho. Plants are medium to tall 

in height. Kernels are white with flint-type endosperm. 

Morocho is considered as an intermediate member within a 

series running from Montana Ecuatoriano to Palillo 

Ecuatoriano (Timothy et al., 1963). 

Blanco Urubamba is a cultivar from the Peruvian race 

Cuzco Gigante, grown at average altitudes of 2800 m.a.s.l. 

Plants are medium to tall in height and are late in 

maturity. Kernels are floury with white endosperm. Its 
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origin is not clear; presumably it is a hybrid race of an 

8-rowed Cuzco and Pardo, a low altitude 8-rowed floury race 

(Grobman et al., 1961). 

Umutu is a cultivar that is grown at elevations of 2200 

to 2900 m.a.s.l. in localized areas of northern Peru. Plants 

are medium to tall in height and are late in maturity. 

Kernels have white endosperm and yellow pericarp. 

Morocho Ayacuchano is a cultivar from the race Morocho 

grown in the low altitude valleys of south-central Peru. 

Plants are short in height and early in maturity. The 

endosperm is yellow with a flinty texture. Morocho seems to 

be a hybrid of Proto-Confite Morocho and Confite Chavinense 

(Grobman et al., 1961). 

The ten cultivars were crossed in a diallel scheme at 

Cajamarca, Peru, during the 1990-1991 planting season. Eight 

paired rows of 22 plants per row were used. Bulked pollen 

was used to pollinate as many possible plants of the 

opposite row and vice versa. Difficulties in matching silk 

emergence and pollen shed required in some cases storage 

of pollen at cold temperatures to be used later for making 

crosses. At harvest ears were hand harvested and bulked for 

each cross. Enough seed for making crosses and for 

evaluation per se was obtained from the International Maize 

and Wheat Improvement Center (CIMMYT) for the Mexican 

cultivars and from the corresponding National Maize Programs 
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for the Colombian, Ecuatorian, and Peruvian cultivars. 

During the planting season of 1991-1992, the ten 

cultivars, one set of their 45 crosses, and a local check 

were evaluated in a 7 x 8 rectangular lattice with two 

replications at seven locations in three (Bolivia, Ecuador, 

and Peru) Andean countries. The following locations were 

used: 

BaAos del Inca (Cajamarca, Peru): 2754 m.a.s.l. 

Pampa Grande (Cajabamba, Peru): 2650 m.a.s.l. 

Anta (Huaraz, Peru): 2650 m.a.s.l. 

Jangas (Huaraz, Peru): 2700 m.a.s.l. 

Santa Catalina (Quito, Ecuador): 2950 m.a.s.l. 

Chuguipata (Cuenca, Ecuador): 2400 m.a.s.l. 

Pairumani (Cochabamba, Bolivia): 2580 m.a.s.l. 

The experimental unit was a two-row plot with each row 

consisting of 11 hills. The distance between rows was 0.80 m 

and between hills was 0.50 m. The experiments were hand 

planted with three seeds per hill and later thinned to two 

seedlings per hill to give a stand equivalent to 50000 

plants per hectare. Each entry was assigned to its 

respective experimental unit at each location according to 

its own randomization plan. 

The agronomic management was that recommended for each 

experimental site. Chemicals were used to keep the fields 

free of insects and weeds. Chemical fertilizers were also 
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applied at the recommended rates for maize production. 

Data were collected in all experiments for days to 50% 

female flowering, plant and ear height (cm) [the average 

of ten plants measured from soil surface to the ligule of 

the flag leaf (plant height) and the node bearing the 

uppermost ear (ear height)], root and stalk lodging (as 

percentage of the total harvested plants), grain moisture 

content (as percentage of its weight at harvest time), total 

grain yield (as t/ha adjusted to 15.0% of grain moisture). 

Ten ears were taken at random from each plot, and the 

following data were recorded for each ear: ear length (cm), 

ear diameter (cm), cob diameter (cm), row number, kernel 

number per row, and the weight (g) of 300 kernels taken at 

random after having reached moisture equilibrium with the 

environment. Ear volume (cm̂ ) was calculated as [(ear 

diameter/2)̂  (ear length) (tt) ]. Kernel depth (cm) was 

estimated as the difference of average ear diameter minus 

average cob diameter, divided by two. The average of ten ear 

measurements was used in data analyses. 

Values for heterosis, expressed as percentage, were 

calculated as follows for mid-parent and high-parent 

heterosis: 

Mid-parent (MP) heterosis: [(?%- MP)/MP] * 100 

High-Parent (HP) heterosis: [(F̂  - HP)/HP] * 100 
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Analysis of variance for the following traits at each 

location was performed: grain yield, 50% female flowering, 

grain moisture content at harvest, plant height, ear height, 

root lodging, stalk lodging, ear volume, kernel depth, and 

number of kernels per row. Combined analysis of variance 

across the seven locations was conducted for all traits. 

Locations were considered as random effects in the analysis 

of variance; consequently, the pooled error mean square was 

used to test the significance of entry by location 

interaction mean square whereas entry mean square (cultivars 

and their crosses) was tested against entry by location 

interaction mean square. Gardner and Eberhart's analysis II 

(1966) was used to partition the total variation among 

entries in variety and heterosis effects. The variety effect 

(Vi) represents part of the additive gene effects and is the 

difference between the mean of each variety per se and the 

mean of all varieties considered in the study. The heterosis 

effects (ĥ j) occur when variety i is crossed to variety j, 

and are related to nonadditive gene effects (Gardner, 1967). 

The heterosis effects were further partitioned into 

average heterosis (h), which is the difference between the 

mean of all crosses and the mean of all parental varieties, 

variety heterosis (ĥ ), which is the average contribution of 

heterosis by variety i in its crosses measured as a 

deviation from average heterosis, and specific heterosis 
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(Sij), Which measures the deviation of the observed 

performance of a specific cross from its expected 

performance based on variety effects, average heterosis, and 

variety heterosis (Crossa et al., 1987). 

The linear model for Gardner and Eberhart's analysis II 

is the following: 

Ŷ j = + %(vj + Vj) + Th + T(hi + hj) + TSij, where 

Yĵ j = the observed mean for a cross between varieties i and 

j; 

Mv = the mean of all varieties; 

Vi , Vj = the variety effects for varieties 1 and j; 

h = the average heterosis effects for all crosses; 

hi , hj = the variety heterosis effects for varieties i and 

j; 

ŝ j = the specific heterosis for a cross between varieties i 

and j; and 

T = a conditional coefficient that equals zero when i - j, 

and one when i  ̂j. 

The total variation for entry sum of aquares was also 

partitioned by fitting the linear models for Gardner and 

Eberhart's analysis III: 

Yii = Pv + Vi, and 

Yij = Mc + 91 + gj + Sij, where 
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= the observed mean for the variety; 

My = the mean of all varieties; 

VjL = the variety effects when parent varieties are included 

in the analysis; 

ŷ j = the observed mean for the cross between varieties i 

and j ; 

jlIq = the mean of all crosses; 

gi , gj = the general combining ability effects for 

varieties i and j; and 

Sĵ j = the specific combining ability effects for that 

particular cross. 

The outline for the diallel analysis of variance 

combined across locations is presented in Table 1. This is a 

nonorthogonal partition of variability among entries with 

the insertion of the variation contributed by the general 

combining ability effects. 

The term 'cultivar' will be used instead of 'variety* 

to keep consistency with the germplasm used in this study. 



Table 1. Sources of variation and expected mean squares for combined analysis 
across locations in diallel cross experiments among varieties 

Source df Expected mean squares 

Total 

Locations (L) 

Replication/L 

Entries (n) 

Cultivars (C) 

GCÂ  

Heterosis (h) 

Average (Ah) 

Cultivar (Ch) 

Specific (Sh) 

ner̂ -1 

e-1 

r-1 

[n(n+l)/2] 

n-1 

n-1 

n(n-l)/2 

1 

n-1 

n(n-3)/2 

- 1 

a2 + ra\.c 

+ reK̂  

+ reK̂  

n 

(t2 + ra\ gca + re(n-2)K2ĝ a/(n-l) 

a2 + ra\,h + reK̂  

+ reK̂  ̂

a2 + râ L.ch + reK̂ ĥ 

+ râ L sjj + 2reK2sh/n(n-3) 



L X entries (e-l){[n(n+l)/2]-l} a2 + 

L X c (e-l)(n-1) a2 + 

L X GCÂ  (e-1)(n-1) (T2 + 

L X h (e-l)[n(n-l)/2] a2 + 

L X Ah (e-l) a2 + 

L X Ch (e-l)(n-1) (T2 + 

L X Sh (e-l)n(n-3)/2 a2 + 

Pooled error e(r-l){[n(n+l)/2]-l} «t2 

 ̂e, r and n are locations, replications and entries, respectively. 
" General combining ability. 
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RESULTS AND DISCUSSION 

Grain yield 

Analysis of variance for each location is presented in 

Table A1 (Appendix). There were highly significant (P ̂  0.01) 

differences among entries (cultivars and their crosses) 

for all locations except for Jangas. The partition of entry 

sum of squares, according to models II and III of Gardner 

and Eberhart (1966), showed that cultivars and heterosis 

effects were also highly significant. In all locations 

except Santa Catalina, heterosis accounted for most of the 

variation. General combining ability effects also were 

statistically significant indicating the presence of 

favorable additive gene effects. 

Among the components of heterosis, specific heterosis 

explained most of the variation though it was significant 

only at four locations (Anta, Santa Catalina, Chuguipata, 

and Pairumani). Average heterosis was highly significant for 

all locations indicating that the mean of the cultivar 

crosses was greater than the mean of cultivars per se (Table 

Al) . 

The combined analysis of variance across the seven 

locations (Table 2) shows highly significant differences for 

all main sources of variation and first order interactions 

except for location x cultivar heterosis (L x Ch). 
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Table 2. Combined analysis of variance across locations 
for grain yield (t/ha) for ten maize cultivars 
and their 45 diallel crosses 

Source df 
Mean souare 

Grain vield 

Location (L) 6 657.75** 

Replication /L 7 10.03** 

Entry 54 17.79** 

Cultivar (C) 9 26.44** 

GCA* 9 23.62** 

Heterosis (h) 45 16.06** 

Average (Ah) 1 345.47** 

Cultivar (Ch) 9 9.05** 

Specific (Sh) 35 8.45** 

L X entries 324 3.05** 

L X C 54 7.80** 

L X OCA 54 5.31** 

L X h 270 2.09* 

L X Ah 6 6.48** 

L X Ch 54 1.70 

L X Sh 210 2.07* 

Pooled error 378 1.63 

C.V.(%) 
S.D. 
Mean 

21.08 
1.28 
6.06 

® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, 

respectively. 
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Most of the total variability was for differences among 

locations (60%). The locations represent a wide range of 

environments from 2400 to 2950 meters above sea level, which 

is characteristic of maize growing areas in the high 

elevations of the Andean region. The location x entry 

interaction was also highly significant, indicating 

different performances of the cultivars at each location. 

Cultivar and heterosis effects were highly significant 

as it also was general combining ability effects (Table 2). 

This is an indication of the existence of favorable gene 

effects for yield among cultivars. However, it seems that 

nonadditive gene effects were important in the expression of 

yield among the cultivars is this study. Heterosis effects 

accounted for 75% of the total variability for entries, 

and specific heterosis accounted for 41% of the total 

heterosis sum of squares. The importance of these sources 

of variation was also reported by several authors working 

with open pollinated maize germplasm. 

Center and Eberhart (1974) studied 13 U.S. Corn Belt 

populations included in diallel crosses, and they reported 

heterosis effects as more important than cultivar effects 

for yield. Mungoma and Pollak (1988) found a higher 

contribution of heterosis effects than cultivar effects to 

the total variation among entries for ten populations 

representing U.S. Corn Belt material and lowland exotic 
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germplasm. Crossa et al. (1990), however, in a study 

involving 25 highland races of Mexican maize at three 

different elevations found that the presence of additive 

effects was more important than nonadditive gene effects. 

Similar trends were also reported by Miranda and Vencovsky 

(1980) working with nine open pollinated varieties of 

tropical lowland maize. 

All components of heterosis were highly significant. 

Average heterosis was the most important component. The 

yield of all ten cultivars in crosses was higher than their 

yields per se; the average yield of cultivars in crosses was 

37.3% greater than the average yield of the parental 

cultivars per se (6.37 t/ha versus 4.64 t/ha) (Table 3). 

Center and Eberhart (1974) reported a 15% superiority of 

crosses over their parents. Specific heterosis (ŝ j) was 

also a significant component of heterosis indicating that 

there were important differences among crosses (Table 2). 

The partition of the sum of squares of crosses following the 

analysis III of Gardner and Eberhart (1966) showed that the 

contribution of specific combining ability effects (58%) was 

higher than that of general combining ability effects (42%) . 

The cultivars INIAP 153, Blanco Urubamba, and Umutu had 

the highest yield per se with 5.76, 5.76, and 5.67 t/ha, 

respectively (Table 3). These yields were reflected in the 

highest and highly significant values for cultivar effects 
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(1.12, 1.12, and 1.03 t/ha), suggesting the presence of 

a higher frequency of favorable alleles as compared with the 

other cultivars. On the other hand, these cultivars had 

negative values for cultivar heterosis effects (ĥ ) which 

might be explained because their yields per se were better 

than their yields in crosses with respect to the rest of 

cultivars. Cultivar heterosis must be considered cautiously 

because its value is a function of both the difference 

between the mean of a parental cultivar i in crosses and the 

Table 3. Average grain yield (t/ha) for ten cultivar 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultivar effects (v̂ ), 
and cultivar heterosis effects (ĥ ) 

Yield 
Cultivar per se crosses Oi Vi hi 

1. Cacahuaz. 3. 79 6.30 -0.08* -0.85** 0.34 
2. Chalqueno 4. 94 6.49 0.14** 0.30** -0.01 
3. Conico 7 4. 03 6.34 

o
 
0
 1 -0.61** 0.26 

4. INIAP 153 5. 76 6.71 0.38** 1.12** -0.18 
5. Mor. Ecuat. 4. 18 5.95 -0.47** -0.45** -0.25 
6. Cacao 3. 22 6.68 0.35** -1.42** 1.06 
7. Cabuya 5. 07 6.65 0.31** 0.43** 0.09 
8. Blanco Urub . 5. 76 6.45 0.08* 1.12** -0.48 
9. Umutu 5. 67 6.72 0.39** 1.03** -0.12 
10. Mor. Ayac. 3. 97 5.43 -1.06** -0.67** 

C
M
 O
 

1 

Mean 4.64 6.37 

LSD̂ o 05) for cultivars per se: 0.95 t/ha. 
LSD̂ 0 05) for cultivars in crosses: 0.32 t/ha. 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 
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mean of all crosses, and of the difference between its mean 

per se and average per se mean of all other cultivars 

(Crossa et al., 1990). 

The Colombian cultivar Cacao had the lowest yield per 

se (3.22 t/ha), but showed highly significant GCA effects 

(0.35) and the largest positive value for cultivar heterosis 

effects (1.06). This result suggests that Cacao has a 

frequency of favorable dominant alleles different from the 

other cultivars and has good general combining ability. 

Cacahuazintle and Conico 7 also had low yields per se (3.79 

and 4.03 t/ha), good yield in crosses, and a positive value 

for cultivar heterosis effects (0.34 and 0.26) (Table 3). 

The cross Cacahuazintle x Cacao was the highest 

yielding combination (8.01 t/ha) and also showed the highest 

specific combining ability (SCA) effects (1.36) (Table 4). 

This cross also had the highest values for both mid-parent 

(MP) heterosis (128.8%) and high-parent (HP) heterosis 

(111.2%) (Table A2). 

Negative values for SCA were obtained in crosses of 

INIAP 153 and Morocho Ecuatoriano from Ecuador with the 

Colombian cultivars Cacao and Cabuya and with Blanco 

Urubamba from Peru (Table 4). The same trend occurred in 

crosses involving Cacao and Cabuya with Blanco Urubamba and 

Umutu. Despite this, these crosses, except Morocho 

Ecuatoriano x Blanco Urubamba (-4.1%), presented positive HP 



Table 4. Average grain yield (t/ha) over seven locations (above diagonal) and 
specific combining ability effects (below diagonal) for 45 crosses 
among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz. 5. 13 5.24 6.80 6.29 8.01 6.81 6.41 6.67 5.39 

2. Chalqueno -1. 30** 4.95 6.96 6.56 7.15 7.39 7.18 7.86 5.23 

3. Conico 7 -1. 02** -1. 48** 7.74 6.38 7.53 7.17 7.25 6.45 4.32 

4. INIAP 153 0. 12* 0. 06 1.02** 5.13 6.60 6.71 6.32 7.55 6.63 

5. Morocho Ec. 0. 46** 0. 52** 0.51** -1.16** 5.99 5.98 5.52 6.91 4.83 

6. Cacao 1. 36** 0. 29** 0.84** -0.50** -0.26** 5.70 6.23 6.38 6.57 

7. Cabuya 0. 21** 0. 57** 0.52** -0.36** -0.23** -1.33** 7.37 7.04 5.68 

8. Blanco Urub. 0. 03 0. 59** 0.83** -0.52** -0.46** -0.57** 0.60** 6.57 5.18 

9. Umutu -0. 02 0. 96** -0.28** 0.40** 0.62** -0.73** -0.03 -0.27** 5.07 

o
 
H
 Morocho Ay. 0. 15** -0. 22** -0.96** 0.93** -0.01 0.91** 0.05 -0.22** -0.64** 

LSD{o.o5) for crosses: 0.95 t/ha. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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heterosis values (Table 2). On the other hand, the Mexican 

cultivars Cacahuazintle, ChalqueAo, and Conico 7 had 

positive SCA with INIAP 153, Morocho Ecuatoriano, Cacao, 

Cabuya, and Blanco Urubamba (Table 4). Crosses between 

cultivars from the same country had negative SCA effects, 

and their yields were lower among of all crosses. 

All values for MP heterosis were positive, indicating a 

favorable frequency of dominant alleles for yield among 

the cultivars. Higher heterosis values were obtained from 

crosses between cultivars from different countries rather 

than from crosses between cultivars belonging to the same 

country. This relation seems reasonable because cultivars 

from the same geographical region are more likely to share 

common ancestors and, therefore, are expected to be less 

genetically diverse. 

Female flowering and grain moisture content 

The analyses of variance for female flowering and grain 

moisture content for each location are presented in Tables 

A3 and A5 in the appendix. Table 5 includes the combined 

analysis of variance across locations. There were 

significant differences among all main sources of variation 

for female flowering and grain moisture content. 

For days to 50% female flowering, differences among 

entries accounted for 67% of the total variation for this 
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Table 5. Combined analysis of variance across locations for 
female flowering (days) and moisture content (%) 
for ten maize cultivars and their 45 diallel crosses 

Mean squares 
Source df Female Moisture 

flowering content 

Location (L) 6 3978.2** 5795.21** 

Replication /L 7 21.8 29.90* 

Entry 54 1611.3** 239.20** 

cultivars (C) 9 9164.1** 1317.94** 

GCA* 9 5690.7** 870.34** 

Heterosis (h) 45 100.7** 23.45 

Average (Ah) 1 967.1** 206.33** 

Cultivar (Ch) 9 106.8** 9.96 

Specific (Sh) 35 74.4** 21.70 

L X entries 324 31.6* 43.21** 

L X C 54 62.8** 156.70** 

L X GCA 54 40.7** 109.42** 

L X h 270 25.4 20.51** 

L X Ah 6 43.3 24.28 

L X Ch 54 16.1 26.66** 

L X Sh 210 27.2 18.82** 

Pooled error 378 23.9 11.72 

C.V.(%) 
S.D. 
Mean 

5.1 
4.9 
96.6 

11.76 
3.42 
29.11 

® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, 

respectively. 
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trait, whereas for grain moisture content locations, that 

accounted for 52% of the total variation, was the most 

important source of variation. 

Cultivar effects were more important than heterosis 

effects accounting for 95% for female flowering and 91% for 

grain moisture content of the total variability for entries. 

General combining ability (6CA) effects were highly 

significant for both traits, suggesting the importance of 

alleles with additive effects. Nonadditive gene effects 

seemed of minor importance for grain moisture content. 

Heterosis and all its components were highly 

significant for female flowering. Cultivar and specific 

heterosis effects were not statistically significant for 

grain moisture content, but average heterosis was highly 

significant (Table 5) indicating the presence of heterosis 

for this trait. The locations x entries interactions were 

highly significant for both traits. For female flowering, 

the location by heterosis interactions and all its 

components were not significant, indicating the relative 

consistency of heterosis effects across locations for female 

flowering. For grain moisture content, location x average 

heterosis interaction was not significant. 

Days to female flowering and grain moisture content at 

harvest time are characteristics related to maturity. They 

provide an indication of the relative earliness or lateness 
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Table 6. Average female flowering (days) for ten 
cultivars of maize per se and in crosses and 
estimates of GCA® effects (ĝ ), cultivar effects 
(Vi), and cultivar heterosis effects (ĥ ) 

Female flowering 
Cultivar Der se crosses Oi Vi hi 

1. Cacahuazintle 85 89 -7.94** -14.1** -0.9* 
2. Chalguefio 84 91 -5.38** -14.6** 1.9** 
3. Conico 7 83 89 -7.96** -16.3** o

 
to

 

4. INIAP 153 108 101 6.09** 8.7** 1.7** 
5. Mor. Ecuat. 121 104 9.05** 22.1** -2.0** 
6. Cacao 119 104 8.87** 20.4** -1.3** 
7. Cabuya 108 100 4.86** 8.9** 0.4 
8. Blanco Urub. 102 97 1.32** 3.5** -0.4 
9. Umutu 103 96 1 o

 
o
 

4.4** -2.2** o
 

H
 Mor. Ayac. 76 88 -8.87** -23.1** 2.7** 

Mean 99 96 

LSD̂ o 05) for cultivars per se; 3.63 days. 
LSD(0.05) for cultivars in crosses: 1.21 days. 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 

of a cultivar compared with others. 

The three Mexican cultivars (i.e., Cacahuazintle, 

Chalqueno, and Conico 7), and Morocho Ayacuchano flowered 20 

days earlier than the other cultivars. Morocho Ayacuchano 

was the earliest cultivar with 76 days after planting. A 

second group with days to female flowering, ranging from 102 

to 108 days, was represented by INIAP 153, Cabuya, Blanco 

Urubamba, and Umutu. The remaining two cultivars, Morocho 

Ecuatoriano and Cacao, were the latest flowering, 121 and 
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119 days after planting, respectively (Table 6). 

Cultivar effects (Vi) were highly significant for all 

cultivars (Table 6). General combining ability (GCA) effects 

effects also were significant for all cultivars but Umutu. 

Negative values for GCA effects and cultivar effects are 

desirable when earlier flowering is desired. The four 

cultivars that had negative and significant values for both 

GCA and cultivars effects were those identified as the 

earliest flowering (Table 6). This suggests the presence of 

a higher frequency of favorable alleles for earlier 

flowering among these cultivars. In general, there was a 

good agreement between the cultivar means per se and their 

respective values for variety effects (Table 6). 

Among crosses, the range for female flowering was from 

77 (Conico 7 X Morocho Ayacuchano) to 118 days (INIAP 153 x 

Morocho Ecuatoriano), (Table 7). Crosses between INIAP 153 

with Conico 7 and Morocho Ecuatoriano had the lowest (-4.4) 

and the highest values (6.3) for specific combining ability 

(SCA) effects. Conico 7 x Morocho Ayacuchano was the only 

cross among the earlier flowering cultivars with negative 

SCA effects (-2.5). Among the later flowering cultivars, 

crosses of INIAP 153 with Umutu and Cacao had negative and 

highly significant values for SCA effects (-3.6 and -3.2, 

respectively). 

Negative values for mid-parent (MP) heterosis indicate 



Table 7. Average female flowering (days) over seven locations (above diagonal) 
and specific combining ability effects (below diagonal) for 45 crosses 
among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuazintle 84 83 94 97 97 92 88 86 79 

2. Chalqueno 1.6** 83 97 102 100 96 90 91 80 

3. Conico 7 2.4** 0.2 90 95 100 94 90 90 77 

4. INIAP 153 -0.3 0.6** -4.4** 118 108 107 106 98 95 

5. Morocho Ecuador o
 

to
 
1.9** -2.2** 6.3** 113 110 104 105 94 

6. Cacao 

H
 

0
 

1 0.1 3.5**-3.2**-l. 2** 109 105 105 99 

7. Cabuya -0.9** 0.2 0.7** 0.2 0. 3 -1. 1** 103 101 92 

8. Blanco Urubamba -1.1** -2.3** 0.7** 2.8**-2. 1** -1. 6** 1. 0** 99 90 

9. Umutu -1.8** 

H
 

0
 

1 2.0**-3.6**-0. 3 0. 4* 0. 2 1. 3** 89 

o
 

H
 Morocho Ayacucho 

H
 

O
 -2.3** -2.5** 1.7**-2. 6** 3. 0** -0. 5** 1. 2** 1.8** 

LSD.0.05) crosses: 3.6 days. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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that the performance of the crosses is towards the 

earliest flowering parent. Most values (87%) of MP heterosis 

among crosses and all values of high-parent (HP) heterosis 

were negative (Table A4). Also, the lowest values for 

heterosis were obtained from crosses between earlier and 

later flowering cultivars. 

For grain moisture content the results followed the 

same trend as was described for female flowering. The ten 

cultivars can be included in two distinct groups for low and 

high moisture content. The cultivars with the lowest grain 

moisture at harvest were Cacahuazintle (22.9%), ChalgueAo 

(25.1%), Conico 7 (21.8%), and Morocho Ayacuchano (27.0%). 

(Table 8). These four cultivars also had highly significant 

negative estimates for both general combining ability (GCA) 

and cultivar effects, suggesting the existence of favorable 

alleles for lower grain moisture content. The other six 

cultivars with the highest grain moisture content had 

positive and highly significant values for GCA effects and 

cultivar effects. The largest positive values for cultivar 

heterosis (ĥ ) were for INIAP 153 (0.86) and Cacahuazintle 

(0.60), whereas the largest negative value was for Morocho 

Ecuatoriano (-0.91) (Table 8). 

Within the group of cultivars with lower moisture 

content, the cross between Conico 7 x Morocho Ayacuchano had 

the lowest negative value (-0.68) for specific combining 
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Table 8. Average grain moisture content (%) for ten 
cultivars of maize per se and in crosses and 
estimates of GCA* effects (gi), cultivar effects 
(Vi), and cultivar heterosis effects (ĥ ) 

Cultivar per se crosses Vi hi 

1. Cacahuazintle 22.9 26.2 -3.02** -7.25** 0.60* 
2. Chalguefio 25.1 26.7 -2.42** -5.10** 0.13 
3. Conico 7 21.8 24.7 -4.63** -8.43** -0.42 
4. INIAP 153 35.4 31.9 3.46** 5.20** 0.86** 
5. Mor. Ecuat. 37.2 31.1 2.57** 6.96** -0.91** 
6. Cacao 31.9 29.4 0.65** 1.71** -0.20 
7. Cabuya 31.6 29.3 0.54** 1.42** -0.17 
8. Blanco Urub. 37.3 31.8 3.27** 7.14** -0.30 
9. Umutu 31.8 29.8 1.10** 1.58** 0.31 
10. Mor. Ayac. 27.0 27.5 -1.51** -3.24** 0.11 

Mean 30.2 28.8 

LSD(0.05) cultivars per se; 2.54%. 
LSD̂ o.os) cultivars in crosses: 0.85%. 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 

ability (SCA) effects (Table 9). The cross between the two 

Colombian cultivars (Cacao x Cabuya) had -1.23 in the high 

moisture content group. Chalgueno x Morocho Ayacuchano had 

the highest positive SCA value with 2.53. 

Negative HP heterosis ranged from -2.5% (Morocho 

Ecuatoriano x Cacao) to -33.7% (Conico 7 x Morocho 

Ecuatoriano). Values for mid-parent heterosis were mostly 

negative indicating the tendency of expression for this 

trait towards lower moisture content (Table A6). 



Table 9. Average grain moisture content (%) over seven locations (eUaove diagonal) 
and specific combining ability effects (below diagonal) for 45 crosses 
among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuazintle 23.7 21.6 27.4 28.6 27.5 27.6 28.5 26.0 24.6 

2. Chalqueno 0.24 21.6 27.8 29.6 26.9 27.5 28.4 27.8 27.5 

3. Conico 7 0.39** -0.16 26.7 24.6 25.5 27.0 28.7 24.8 22.0 

4. INIAP 153 -1.86** -2.41**0.94** 36.2 32.3 33.6 36.3 34.3 33.0 

5. Morocho Ecuador 0.20 0.59**2.15** 1.33** 32.5 31.4 34.8 33.6 29.0 

6. Cacao 1.05** -0.23 0.60**-0.63** 0.37** 28.8 33.1 30.7 27.7 

7. cabuya 1.24** 0.52**2.27** 0.71**-0.55**-1.23** 32.1 29.7 26.3 

8. Blanco Urubamba-0.64**-1.31**1.23** 0.66** 0.07 0.34* -0.59** 34.1 29.9 

9. Umutu -0.93** 0.24 -0.57** 0.90** 1.04** 0.05 -0.77** 0.91** 27.6 

10. Morocho Ayacucho0.30 2.53*-0.68** 2.23**-0.91** 0.32* -1.61**-0.67**-0.86** 

LSD/q 05) for crosses: 2.54%. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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Plant height and ear height 

The analysis of variance for plant and ear height per 

location are presented in Tables A7 and A9. On the 

average, plants were taller at Pairumani (292.4 cm) and 

shorter at Pampa (161.3 cm) (Table A7). The unfavorable 

growing season at Pampa, characterized by the absence of 

rainfall, caused a significant reduction in plant size at 

this location. 

In the combined analysis of variance across locations 

differences among locations accounted for 63% of the total 

variation for plant height and 45% for ear height (Table 

10). Differences among entries also were highly significant 

and the highly significant interaction locations x entries 

indicates a differential response of the cultivars to the 

distinct environments for both plant and ear size. 

Most of the total variation among entries for plant 

(87%) and ear (90%) height was caused by cultivar effects. 

Miranda and Vencovsky (1984) also reported that 87% of the 

total sum of squares for entries was due to cultivar effects 

for a diallel study that included nine lowland open 

pollinated maize varieties. General combining ability (GCA) 

effects were highly significant, and their contribution 

(88%) to the total variation among crosses (Gardner and 

Eberhart's analysis III) was greater than specific combining 

ability (SCA) effects (12%) indicating that additive effects 



47 

Table 10. Combined analysis of variance across locations for 
plant height (cm) and ear height (cm) for ten maize 
cultivars and their 45 diallel crosses 

Mean squares 
Source df Plant 

heiaht 
Ear 

heiaht 

Location (L) 6 184076.1** 77246.9** 

Replication /L 7 2921.2** 1856.9** 

Entry 54 4743.3** 4286.6** 

Cultivars (C) 9 24856.2** 23038.8** 

GCA« 9 16398.5** 14712.8** 

Heterosis (h) 45 720.8* 536.1 

Average (Ah) 1 8027.4** 2727.3** 

Cultivar (Ch) 9 558.8 451.9 

Specific (Sh) 35 553.6 495.1 

L X entries 324 626.6* 552.9** 

L X C 54 1770.9** 1699.3** 

L X GCA 54 1487.8** 1442.7** 

L X h 270 397.7 323.6 

L X Ah 6 457.3 172.9 

L X Ch 54 530.4 550.9* 

L X Sh 210 361.9 269.5 

Pooled error 378 432.9 384.3 

C.V. (%) 
S.D. 
Mean 

9.4 
20.8 
221.9 

15.3 
19.6 
128.5 

® General combining ability. 
*,** Significant at 0.05 and 

respectively. 
0.01 probability levels, 
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were more important in the expression of plant and ear 

height. Vasal et al. (1993a) reported that both GCA and SCA 

were highly significant for plant height in a diallel 

involving nine CIMMYT quality protein lowland maize 

populations. In a following study, Vasal et al. (1993b) 

found GCA to be highly significant for ear height among ten 

CIMMYT subtropical quality protein maize populations. 

Heterosis effects were significant only for plant 

height and, among its components, average heterosis was 

highly significant. Only average heterosis was significant 

for ear height. Miranda and Vencovsky (1984) also found 

average heterosis to be the only highly significant 

component of heterosis for plant and ear height. 

Average plant size varied from 176 cm for Morocho 

Ayacuchano to 251 cm for Morocho Ecuatoriano (Table 11). The 

Mexican cultivars, Cacahuazintle, ChalqueAo, and Conico 7, 

and the Colombian cultivar Cacao, had the shortest plant 

size. GCA effects (ĝ ) and cultivar effects (vj) for all 

ten cultivars were highly significant. Negative estimates 

of GCA effects were for the Mexican cultivars and Morocho 

Ayacuchano. Morocho Ayacuchano had the largest negative GCA 

effects (-20.2) and cultivar effects (-39.4), whereas the 

largest positive GCA effects (16.6) and cultivar effects 

(36.0) were for Morocho Ecuatoriano (Table 11). 

Only Conico 7 and Cacao showed positive and highly 
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Table 11. Average plant height (cm) for ten cultlvars 
of maize per se and in crosses and estimates of 
GCA* effects (ĝ ), cultivar effects (v̂ ) and, 
cultivar heterosis effects (ĥ ) 

Plant height 
Cultivar per se crosses v̂  bi. 

1. Cacahuazintle 196 213 -11. 6** 

CO iH 

6** -2. 3 
2. Chalguefio 200 213 -12. 0** -15. 0** -4. 5 
3. Conico 7 185 217 -7. 3** -29. 7** 7. 5 
4. INIAP 153 224 235 13. 6** 29. 2** -1. 0 
5. Mor. Ecuat. 251 238 16. 6** 36. 0** -1. 4 
6. Cacao 210 227 3. 8** -4. 9** 6. 2 
7. Cabuya 226 228 4. 8** 11. 3** -0. 9 
8. Blanco Urub. 232 228 5. 4** 17. 2** -3. 2 
9. Umutu 229 229 7. 0** 13. 9** 0. 1 
10. Mor. Ayac. 176 206 —20. 2** 1 w u>

 

4** -0. 4 

Mean 213 223 

ŜD ô.05) cultivars per se: 15.4 cm. 
LSD̂ o.05) cultivars in crosses: 5.1 cm. 
® General combining ability. 
*,** significant at 0.05 and 0.01 probability levels. 

significant cultivar heterosis effects (7.5 and 6.2, 

respectively). The only negative and significant value was 

for ChalgueRo (hi=-4.5) (Table 11). 

Negative values for GCA effects and cultivar effects 

suggest the presence of alleles for shorter plant size, 

which might be convenient if interest is focused on shorter 

plants. The crosses of Morocho Ayacuchano by Cacahuazintle 

and Chalguefto were, on the average, the shortest in plant 
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height with 191 cm for each cross. The tallest plant size 

(260 cm) was obtained by the cross between the two 

Ecuatorian cultivars, INIAP 153 and Morocho Ecuatoriano 

(Table 12). 

Extreme values for specific combining ability (SCA) 

effects were obtained in crosses between taller and shorter 

cultivars. The largest negative SCA estimates were for Cacao 

X Chalquefio (-9.2) and Cabuya x Blanco Urubamba (-8.8). 

Cacao X Morocho Ayacuchano (10.2) and Conico 7 x Cabuya 

(9.4) had the largest positive values for SCA effects (Table 

12). Values for high parent (HP) heterosis were mostly 

negative (73%) whereas those for mid-parent (MP) heterosis 

were mostly positive (87%) (Table A8), indicating that the 

plant size of most crosses were in the direction of the 

taller parent. 

For ear height the results were very similar to those 

of plant height. Among cultivars, the lower ear position was 

for Morocho Ayacuchano (89 cm), followed by Conico 7 (98 

cm), Cacahuazintle (105 cm), and Chalquefio (107 cm) (Table 

13). All these cultivars had negative and significant values 

for GCA effects and cultivar effects. The highest ear 

position was for Morocho Ecuatoriano (162 cm) and INIAP 153 

(157 cm). These cultivars had values for GCA effects and 

cultivar effects of 15.7 and 12.7, and of 37.8 and 32.1, 

respectively. 



Table 12. Average plant height (cm) over seven locations (above diagonal) and speci­
fic combining ability effects (below diagonal) for 45 crosses eunong ten 
maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz. 200 199 219 233 217 213 224 223 191 

2. Chalgueno 0.2 196 225 230 206 224 223 219 191 

3. Conico 7 -5.8** -8.0** 228 229 226 230 224 227 193 

4. INIAP 153 -6.7** 0.4 -1.8** 260 233 250 244 240 221 

5. Morocho Ecua. 3.9** 1.9** -3.6** 6.8** 239 247 239 253 215 

6. Cacao 1.6* -9.2** 6.1** -7.1** -5.2** 224 241 237 217 

7. Cabuya -3.3** 8.0** 9.4** 8.1** 1.8* -7.7** 225 227 209 

8. Blanco urub. 6.9** 6.3** 2.4** 1.4 -6.1** 8.6** -8.8** 230 204 

9. Umutu 3.8** 0.5 4.6** -4.3** 5.7** 3.2** -8.0** -5.6** 210 

10. Morocho Ayac.-0.8 -0.1 -3.3** 3.9** -5.2** 10.2** 0.5** -5.1** -0.0 

LSD.q op) for crosses: 15.4 cm. 
*,** significant at 0.05 and 0.01 probability levels, respectively. 
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The mean ear height of crosses ranged from 98 cm for the 

cross between Cacahuaz Int le x Horocho Ayacuchano to 168 cm for 

INIAP 153 X Norocho Ecuatoriano (Table 14). The lowest value 

for SCA effects was for INIAP 153 x Cacao (-9.0) whereas the 

highest value for SCA effects was for Cacao x Morocho 

Ayacuchano (11.3). Negative and significant estimates for SCA 

effects were for crosses of Blanco Urubamba with Morocho 

Ecuatoriano (-6.4) and Cabuya 7 (-5.2). These crosses also had 

negative estimates for MP and HP heterosis (Table AlO). 

Table 13. Average ear height (cm) for ten cultivars 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultivar effects (v̂ ), 
and cultivar heterosis effects (ĥ ) 

Eetr height 
Cultivar per se crosses ĥ . 

1. Cacahuaz intle 105 121 -9. 3** -19. 5** 0. 4 
2. Chalquefio 107 121 -9. 8** -17. 3** -1. 2 
3. Conico 7 98 122 —8. 0** -26. g** 5. 4** 
4. INIAP 153 157 141 12. 7** 32. 1** -3. 3* 
5. Mor. Ecuat. 162 143 15. 7** 37. 8** —3. 2* 
6. Cacao 119 133 3. 8** —5. 9** 6. 8** 
7. Cabuya 142 137 9. 1** 17. 6** 0. 3 
8. Blanco Urub. 130 131 2. 1** 5. y** -0. 7 
9. Umutu 136 133 4. 1** 12. 0** -1. 9 
10. Mor. Ayac. 89 111 -20. 2** -35. 5** -2. 5 

JJean 124 122 

LSD^0.05) for cultivars: 14.5 cm. 
LSD^0.05) FOR cultivars in crosses: 4.8 cm. 
* General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 



Table 14. Average ear height (cm) over seven locations (above diagonal) and speci­
fic combining ability effects (below diagonal) for 45 crosses among ten 
maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle 109 108 133 143 123 123 125 127 98 

2. Chalqueno -1.4 106 130 133 121 135 131 122 99 

3. Conico 7 

H
 

1 -5.2** 128 133 133 139 123 131 98 

4. INIAP 153 0.4 -2.4 -6.2** 168 137 157 147 143 123 

5. Horocho Ecua. 7.1** -2.5 -4.0* 10.7** 141 156 141 152 123 

6. Cacao -1.0 -2.7 8.0** -9.0** -7.6 ** 
134 139 142 124 

7. Cabuya 5.8** 6.6** 9.1** 5.7** 1.7 -8. 0** 135 140 124 

8. Blanco Urub. 3.3** 9.6** -0.5 3.1** 

VO 1 ** 4. 1** -5.2 ** 
129 109 

9. Umutu 2.9 -1.8 6.0** -3.4* 2.7 4. 9** -2.7 —6. 1** 111 

o
 

H
 Morocho Ayac. -1.5 -0.3 -3.2 1.1 —1. 6 11. 3** 

H
 

1 —1. 9 -2.5 

LSD,0.05) crosses: 14.5 cm. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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Root lodging and stalk lodging 

The analysis of variance for each location for root and 

stalk lodging are presented in Tables All and A13. The 

combined analysis of variance across locations indicated 

highly significant differences for locations, for entries, 

and for the location x entries interaction for both root and 

stalk lodging (Table 15). Cultivar effects were highly 

significant and their contribution to the total variability 

for entries was nearly double the contribution of heterosis 

effects. Heterosis was highly significant only for stalk 

lodging and specific heterosis was the only component 

showing significance. General combining ability (GCA) 

effects were highly significant for root and stalk lodging, 

indicating that additive gene effects were important in 

their expression. (Table 15). 

The location x cultivar interaction effects and 

location x GCA interaction effects were highly significant 

for root and stalk lodging. No significance was detected 

for location x heterosis, but the interactions of locations 

and each component of heterosis were significant for stalk 

lodging, indicating a different response for stalk lodging 

of the cultivars and their crosses among locations. 

Among cultivars, Cacao had the lowest percentage of 

root lodging (1.6%) with the Ecuatorian cultivars INIAP 153 

(3.5%) and Morocho Ecuatoriano (3.5%) having little root 
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Table 15. Combined analysis of variance across locations for 
root and stalk lodging (%) for ten cultivars of 
maize and their 45 diallel crosses 

source df 
Mean 

Root 
lodaina 

sauares 
Stalk 
lodaina 

Location (L) 6 9869.60** 2493.52** 

Replication /L 7 256.72** 143.73** 

Entry 54 102.40** 164.47** 

Cultivar 9 375.50** 669.81** 

GCA® 9 257.14** 369.64** 

Heterosis (h) 45 47.78 63.40** 

Average (Ah) 1 21.56 153.69 

Cultivar (Ch) 9 72.45 62.61 

Specific (Sh) 35 42.19 61.02** 

L X entries 324 59.60** 48.50** 

L X C 54 109.93** 115.39** 

L X GCA 54 91.52** 79.07** 

L X h 270 49.53 35.12 

L X Ah 6 62.58 96.26** 

L X Ch 54 63.49* 37.51* 

L X Sh 210 45.57 32.76* 

Pooled error 378 44.41 26.17 

C.V.(%) 
S.D. 
Mean 

92.93 
6.66 
7.17 

74.25 
5.12 
6.89 

® General combining ability. 
*,** significant at 0.05 and 0.01 probability levels, 

respectively. 
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lodging (Table 16). The highest percentage of root lodging 

was for the Mexican cultivars Cacahuazintle (8.9%), 

Chalquefio (12.5%), and Conico 7 (12.0%), which is not 

surprising because these cultivars are characterized by 

their poor radicular root system. 

Table 16. Average root lodging (%) for ten cultivars 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultivar effects (vj), 
and cultivar heterosis effects (ĥ ) 

Root lodging 
Cultivar per se crosses gĵ  

1. Cacahuazintle 8.87 9.07 2 
2. Chalquefio 12.49 8.76 1 
3. Conico 7 11.96 8.23 1 
4. INIAP 153 3.46 6.89 -0.40 
5. Mor. Ecuat. 2.38 6.38 -0.98 
6. Cacao 1.55 5.52 -1.94 
7. Cabuya 7.65 5.21 -2.29 
8. Blanco Urub. 6.74 8.28 1.16 
9. Umutu 6.38 6.52 -0.82 
10. Mor. Ayac. 6.69 7.61 0.41 

Mean 6.82 7.25 

Vi 

2 .05** 1. 02 
1** 5 .67** -1. 13* 

5 .14** -1. 46* 
1* -3 .36** 1. to

 
03

 » 

-4 .44** 1. 24* 
* *  —5 .27** 0. 69 

0 .83 -2. 71** 
**  -0 .08 1. to

 
o
 * 

**  -0 .44 -0. 60 
* -0 .13 0. 47 

LSD^0.05) FOR cultivars per se: 4.9%. 
LSD^O.05) for cultivars in crosses: 1.6%. 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 
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Negative values for GCA effects, which are desirable to 

reduce lodging, were obtained for Cabuya (-2.29), Cacao 

(-1.94), Umutu (-0.82), Morocho Ecuatoriano (-0.98), and 

INIAP 153 (-0.40). All these cultivars, except Cabuya, also 

had negative values for cultivar effects. Cabuya had the 

lowest cultivar heterosis effect (ĥ  = -2.71) whereas INIAP 

153 (1.28) and Morocho Ecuatoriano (1.24) had the highest 

values (Table 16). 

The average root lodging for crosses ranged from 2.7% 

for Cacao x Cabuya to 12.8% for Chalquefio x Blanco Urubamba. 

These crosses had specific combining ability effects of 

-0.32 and 2.66, respectively (Table 17). The crosses among 

Mexican cultivars had higher percentages of root lodging. 

Crosses among the Ecuatorian and Colombian cultivars had 

below average root lodging. 

The cross between INIAP 153 x Blanco Urubamba had the 

lowest negative SCA effects (-2.48). Other crosses with 

low and negative SCA effects were Conico 7 x INIAP 153 

(-2.37) and Cacahuazintle x Cacao (-2.32). These crosses had 

5.5%, 5.6% and 5.0% of root lodging, respectively (Table 

17) . 

Negative mid-parent heterosis was for 44% of the 

crosses. The range was between -47.8% (Chalquefio x Cabuya)) 

to 208.0% (Morocho Ecuatoriano x Cacao) (Table A12). The 

cultivar Cabuya had negative values for HP and MP heterosis 



Table 17. Average root lodging (%) over seven locations (above diagonal) and speci­
fic combining ability effects (below diagonal) for 45 crosses among ten 
maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle 11.97 11.13 11.90 7.98 5.04 5.72 9.88 9.38 8.67 

2. Chalgueno 0.96 12.21 8.18 6.18 8.39 5.26 12.78 6.25 7.67 

3. Conico 7 0.72 2.15** 5.58 6.65 6.16 5.66 8.53 11.21 6.98 

4. INIAP 153 3.00**0.37 -2.37** 5.15 3.89 5.31 5.53 6.49 10.01 

5. Morocho Ecuador-0.34 -1.79** -0.73 -0.72 6.05 4.74 8.81 4.24 7.61 

6. Cacao -2.32**1.38* -0.25 -1.02 1.72** 2.70 6.33 5.05 6.11 

7. Cabuya -1.29*-1.40* -0.41 0.75 0.76 -0.32 5.95 3.67 7.93 

8. Blanco Urubamba -0.58 2.66** -0.99 -2.48** 1.38* -0.14 -0.17 7.80 8.94 

9. Umutu 0.90 -1.89** 3.67** 0.46 -1.21* 0.56 -0.47 0.21 4.62 

o
 
H
 Morocho Ayac. -1.04 -1.69** -1.79** 2.75** 0.93 0.39 2.56** 0.12 -2.22 kit 

LSD(o.o5) for crosses: 4.94%. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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in crosses with all cultivars except Morocho Ayacuchano. 

The average percentage of stalk lodging for cultivars 

per se (7.8%) was higher than that of their crosses (6.7%) 

(Table 18). Cacahuazintle (19.4%), ChalqueMo (11.6%), and 

Conico 7 (11.8%) had the highest percentages per se while 

INIAP 153 (3.1%), Morocho Ecuatoriano (3.7%), and Cacao 

(3.5%) had the lowest percentages of stalk lodging. GCA 

effects were also positive for Cacahuazintle, ChalqueAo, 

Conico 7, Umutu, and Morocho Ayacuchano. Negative and 

significant GCA effects were obtained for INIAP 153 

(-1.70), Morocho Ecuatoriano (-1.65), Cacao (-1.86), and 

Cabuya (-1.46). 

Negative estimates of cultivar heterosis were obtained 

for Cacahuazintle (-2.79), ChalqueAo (-1.79), and Cabuya 

(-0.51). Morocho Ayacuchano (I.IO), Conico 7 (1.07), and 

Blanco Urubanba (0.82) had positive and significant cultivar 

heterosis effects.(Table 18). 

Stalk lodging among crosses ranged from 2.2% (INIAP 153 

X Cacao) to 16.8% (Cacahuazintle x Conico 7). These crosses 

had estimates of SCA effects of 0.89 and 4.08, respectively. 

(Table 19). In general crosses of Cacahuazintle and Conico 7 

with the other cultivars resulted in higher percentages of 

stalk lodging. The lowest percentages of stalk lodging were 

obtained when INIAP 153 was crossed to the other cultivars 

except with the Mexican cultivars. The cross Conico 7 x 
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Table 18. Average stalk lodging (%) for ten cultivars 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultiver effects (v̂ ), 
and cultivar heterosis effects (ĥ ) 

Stalk lodging 
Cultivar Der SÇ crosses Vi hi_ 

1. Cacahuazintle 19. 40 9.34 2. 99** 11.56** -2.79 
2. Chalguefto 11. 64 6.85 0. 19 3.80** -1.71 
3. Conico 7 11. 82 9.40 3. 06** 3.98** 1.07 
4. INIAP 153 3. 14 5.16 -1. 70** -4.70** 0.65 
5. Mor. Ecuat. 3. 66 5.21 -1. 65** -4.18** 0.44 
6. Cacao 3. 52 5.03 -1. 86** -4.32** 0.30 
7. Cabuya 5. 94 5.38 -1. 46** -1.90** -0.51 
8. Blanco Urub. 6. 04 6.61 -0. 07 -1.80** 0.82 
9. Umutu 7. 28 6.99 0. 35* -0.56 0.63 
10. Mor. Ayac. 5. 93 6.81 0. 14 -1.91** 1.10' 

Mean 7.84 6.68 

LSD^0 05) for cultivars per se: 3.8%. 
LSD̂ 0 05̂  for cultivars in crosses: 1.3%. 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 

INIAP 153 had 13.5% of stalk lodging and the highest 

positive SCA effects (5.50). 

Most values for high (87%) and mid-parent (73%) 

heterosis were negative. The highest positive HP heterosis 

values were for crosses between Morocho Ayacuchano with 

Blanco Urubamba (42.8%) and Umutu (53.8%) (Table A14). 

Morocho Ayacuchano crossed with Cacahuazintle had the lowest 

negative estimate of HP heterosis (-70.6%) and MP heterosis 

(-54.9%). 



Table 19. Average stalk lodging (%) over seven locations (above diagonal) and speci­
fic combining ability effects (below diagonal) for 45 crosses among ten 
maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle 10.93 16.81 8.90 6.66 7.54 8.00 10.64 8.85 5.71 

2. Chalqueno 1.07* 7.28 4.56 6.35 5.60 6.29 6.55 8.85 5.23 

3. Conico 7 4.08** -2.65** 13.54 8.14 5.11 4.98 10.27 10.12 8.36 

4. INIAP 153 0.93* -0.61 5.50** 2.81 2.23 2.77 2.93 4.01 4.74 

5. Morocho Ecuador--1.36** 1.13** 0.05 -0.52 3.95 3.99 4.70 3.41 6.91 

6. Cacao -0.27 0.59 -2.77** -0.89* 0.78 6.47 4.26 5.07 5.01 

7. Cabuya -0.21 0.88*-3.30** -0.75 0.42 3.11** 5.31 5.16 5.49 

8. Blanco Urubamba 1.04* -0.25 0.60 -1.97** -0.26 -0.49 0.16 6.24 8.62 

9. Umutu -1.17** 1.63**0.03 -1.31** -1.97 *-0.10 -0.41 -0.71 11.19 

10. Morocho Ayac. -4.10**-1.78*-1.52**-0.38 1.74**0.05 0.12 1.87** 4.02** 

LSD,0.05) crosses: 3.79%. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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Ear volume, k#rn#l depth and kernels per row 

The analyses of variance for ear volume, kernel depth, 

and kernels per row are listed in Tables A15, A17, and A19, 

respectively. The combined analysis of variance across 

locations for ear volume (cm̂ ), kernel depth (cm), and 

number of kernels per row (Table 20) showed highly 

significant differences for locations, for entries, and for 

the interactions of locations x entries. Most of the total 

variation among entry means was accounted for by cultivar 

effects (66%, 85%, and 74% for each trait, respectively). 

General combining ability effects (GCA) were also highly 

significant for the three traits. Specific heterosis was the 

most important component of heterosis, being highly 

significant for ear volume, kernel depth, and kernels number 

per row (Table 20). Cultivar heterosis was significant for 

kernel depth and kernels per row, whereas average heterosis 

was significant only for kernels per row. 

The interactions of locations x cultivars, and 

locations x GCA were highly significant for each trait. 

Locations x heterosis interaction was significant only for 

ear volume. Locations x average heterosis showed statistical 

significance for the three traits. Higher values for ear 

volume might be desirable if breeding objectives are to 

improve ear appearance for better quality 'green corn'. 
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Table 20. Combined analysis of variance across locations for 
ear volume (cmf), kernel depth (cm) and kernel 
number per row for ten maize cultivars and their 
45 dlallel crosses 

Mean squares 
Source df Ear 

volume 
Kernel 
depth 

Kernels 
per row 

Location (L) 6 447523.2** 3.339** 928.61** 

Replication /L 7 6306.0** 0.190** 17.30** 

Entry 54 16458.3** 0.302** 64.03** 

Cultivars (C) 9 64954.6** 1.537** 283.01** 

GCA* 9 40113.2** 1.141** 209.37** 

Heterosis (h) 45 6759.1** 0.055** 20.23** 

Average (Ah) 1 84450.6 0.147 230.65** 

Cultlvar (Ch) 9 4438.1 0.077** 20.25** 

Specific (Sh) 35 5136.2** 0.047* 14.22** 

L X entries 324 3572.0** 0.040** 6.91** 

L X C 54 7784.9** 0.091** 12 .47** 

L X CCA 54 6075.0** 0.069** 11.20** 

L X h 270 2729.4* 0.030 5.80 

L X Ah 6 16322.6** 0.176** 15.27** 

L X Ch 54 3342.9* 0.035 6.41 

L X Sh 210 2183.3 0.025 5.37 

Pooled error 378 2165.8 0.027 4.23 

C.V.(%) 
S.D. 
Mean 

17.1 
46.5 
272.1 

14.440 
0.165 
1.145 

9.17 
2.20 
23.97 

 ̂General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, 

respectively. 
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Table 21. Average ear volume (cm̂ ) for ten cultlvars 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultivar effects (Vi), 
and cultivar heterosis effects (ĥ ) 

Ear volume 
Cultivar oer se crosses Vi hi 

1. Cacahuaz intle 257.7 284.4 8 .4** 7.8* 4. 5 
2. Chalguefio 238.2 279.4 2 .7* -11.6** 8. 5* 
3. Conico 7 229.4 265.1 -13 .4** -20.5** -3. 1 
4. INIAP 153 268.4 274.7 -2 .6* 18.5** -11. 8** 
5. Mor. Ecuat. 211.8 261.1 -17 .9** -38.1** 1. 2 
6. Cacao 195.5 272.0 -5 .6** -54.4** 21. 5** 
7. Cabuya 247.0 261.6 -17 .4** -2.9 -15. 9** 
8. Blanco Urub. 318.8 303.3 29 .6** 68.9** -4. 9 
9. Umutu 329.9 306.9 33 .6** 80.1** -6. 4 
10. Mor. Ayac. 202.0 261.5 -17 .4** -47.9** 6. 5 

Mean 249.9 277.0 

LSD̂ o.05) cultlvars per se: 34.5 cmf. 
LSD̂ o 05̂  for cultlvars in crosses: 11.5 cm̂ . 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 

Ear volume ranged from 195.5 cm̂  for Cacao to 329.9 cm̂  

for Umutu (Table 21). The average mean ear volume for 

cultlvars per se (249.9 cm̂ ) was lower than the mean for 

cultlvars in crosses (277.0 cm̂ ) . Blanco Urubamba and Umutu, 

both Peruvian cultlvars, were the only ones with their 

mean in crosses lower than their mean per se. GCA effects 

were significant for all cultlvars. Cultivar effects also 

were significant for all cultlvars, but for Cabuya. Umutu 
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and Blanco Urubamba had the highest values for both GCA 

effects (33.6 and 29.6), and for cultivar effects (80.1 

and 68.9). Low and negative GCA effects and cultivar effects 

were for Morocho Ayacuchano (-17.4 and -47.9), and for 

Morocho Ecuatoriano (-17.9 and -38.1). Cacao had a -54.4 

for cultivar effects although its performance in crosses and 

its contribution to heterosis was greater than the other 

cultivars. Cacao had a large and highly significant estimate 

of cultivar heterosis effects (21.5) (Table 21). 

Specific combining ability (SCA) effects ranged from 

-35.1 for Chalguefio x Conico 7 to 30.0 for Conico 7 x 

Cabuya (Table 22). The cross with the highest ear volume was 

ChalgueAo x Umutu (340.1 cm̂ ) ; this cultivar cross had a 

high parent (HP) heterosis of 3.1%, and a mid-parent (MP) 

heterosis of 19.7% (Table A16). Positive and highly 

significant specific combining ability (SCA) effects were 

obtained for Blanco Urubamba in crosses with Cacahuazintle 

(24.5) and Conico 7 (23.3); the ear volume for these crosses 

was 339.5 cm̂  and 316.5 cm̂ , respectively (Table 22). Blanco 

Urubamba had negative SCA effects when crossed with INIAP 

153 (-32.8) and Cabuya (-21.3). The lowest ear volume was 

for INIAP 153 X Morocho Ecuatoriano (226.0 cm̂ ), which had 

estimates of -30.5 for SCA effects, -15.8% for HP heterosis, 

and -5.9% for MP heterosis (Table A20). 

Most crosses involving Cacahuazintle, Chalguefio, and 



Table 22. Average ear volume (cm̂ ) over seven locations (above diagonal) and speci­
fic combining ability effects (below diagonal) for 45 crosses eunong ten 
maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz. 257.1 247.6 293.9 273.9 290.0 266.1 339.5 320.0 271.9 

2. Chalgueno -31.0** 231.3 291.4 280.9 250.7 281.9 305.0 340.1 276.3 

3. Conico 7 -24.4**-35.1** 275.8 242.2 271.5 276.3 316.5 293.3 231.8 

4. INIAP 153 11.1** 14.2** 14.7** 226.0 254.0 271.5 271.2 321.8 266.9 

5. Morocho Ecu. 6.4 19.0** -3.6 -30.5** 261.3 227.2 296.3 290.6 251.8 

6. Cacao 10.3**-23.4** 13.5**-14.8** 7.8* 242.0 314.6 301.6 262.3 

7. Cabuya -1.9 19.5** 30.0** 14.4**-14.6**-12.0** 267.9 281.5 239.8 

8. Blanco Urub. 24.5** -4.2 23.3**-32.8** 7.6* 13.7**-21.3** 339.4 279.3 

9. Umutu 1.0 26.8** -4.0 13.8** -2.1 -3.4 -11.7** -0.8 273.6 

10. Morocho Aya. 3.9 14.0**-14.4** 9.9** 10.0** 8.4* -2.4 -9.9**-19.6** 

LSD/g get for crosses: 34.5 cm̂ . 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 
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Conlco 7 as one of the parents had positive HP heterosis 

percentages (Table A16). Nevertheless, the cross with the 

highest high-parent (29.9%) and mid-parent (32.0%) heterosis 

was Cacao x Morocho Ayacuchano. Only six crosses had 

negative MP heterosis. INIAP 153 x Blanco Urubamba had the 

lowest MP heterosis with -7.6%. 

The average kernel depth was 1.12 cm for cultivars per 

se and 1.15 cm for cultivars in crosses (Table 23). The 

lowest kernel depths were for Cacao (0.82 cm), Morocho 

Ecuatoriano (0.88 cm), and Cabuya (0.94 cm). These 

cultivars also had negative values for cultivar effects. 

Blanco Urubamba (1.4 cm) and Umutu (1.3 cm) had the highest 

cultivar per se values (Table 23). 

GCA effects were highly significant for the ten 

cultivars being positive for all Mexican (Cacahuazintle, 

Chalguefio and Conico 7) and Peruvian (Blanco Urubamba, Umutu 

and Morocho Ayacuchano) cultivars. Blanco Urubamba had the 

highest value for GCA effects (0.13) and cultivar effects 

(0.28), with cultivar heterosis effects almost zero (h£= 

-0.01) (Table 23). 

The cross Cacahuazintle x Blanco Urubamba had the 

highest kernel depth (1.44 cm) and a value of 0.08 for SCA 

effects (Table 24). This combination had 14.1% and 3.1% for 

MP and HP heterosis, respectively (Table A22). The cross 

INIAP 153 X Blanco Urubamba had a kernel depth of 1.10 cm 
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Table 23. Average kernel depth (cm) for ten cultivars 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultivar effects (v̂ ), 
and cultivar heterosis effects (ĥ ) 

Kernel depth 
Cultivar oer se crosses Vi hi 

1. Cacahuazintle 1. 13 1.21 0. 07** 0. 01 0.06** 
2. Chalgueflo 1. 21 1.25 0. 11** 0. 09** 0.06** 
3. Conico 7 1. 18 1.20 0. 05** 0. 06** 0.02 
4. INIAP 153 1. 16 1.12 -0. 04** 0. 06** -0.06** 
5. Mor. Ecuat. 0. 88 1.05 -0. 11** -0. 24** 0.00 
6. Cacao 0. 82 1.04 -0. 12** -0. 30** 0.03* 
7. Cabuya 0. 94 1.02 -0. 15** -0. 18** -0.06** 
8. Blanco Urub. 1. 40 1.27 0. 13** 0. 28** -0.01 
9. Umutu 1. 30 1.19 0. 04** 0. 18** -0.05** o

 
H

 Mor. Ayac. 1. 14 1.16 0. 01* 0. 02 0.00 

Mean 1.12 1.15 

LSD(0.05) cultivars per se; 0.12 cm. 
LSD^o 05^ for cultivars in crosses: 0.04 cm. 
® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels. 

and the lowest SCA effects (-0.15) and MP heterosis 

(-14.3%). 

ChalgueAo, in crosses with Morocho Ecuatoriano and 

Umutu, had the highest estimates for SCA effects (0.10 for 

each cross), with 1.24 cm and 1.40 cm kernel depth (Table 

24). Also, ChalqueRo x Morocho Ecuatoriano had the highest 

MP heterosis (18.9%) and a positive HP heterosis (2.7%) 

(Table A18). 



Table 24. Average kernel depth (cm) over seven locations (above diagonal) and specific 
combining ability effects (below diagonal) for 45 crosses among ten maize 
cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz. 1.25 1.24 

CO H
 
H
 1.08 

o
 
H
 
H
 1.07 1.44 1.34 1.22 

2. Chalgueno -0.08** 1.22 1.26 1.24 1.06 1.09 1.38 1.40 1.32 

3. Conico 7 -0.03* -0.09** 1.21 1.06 1.11 1.11 1.39 1.23 1.22 

4. INIAP 153 0.00 0.04** 0.04** 0.99 1.03 1.05 1.10 1.16 1.09 

5. Horocho Ecu. 1 o
 
o
 
w
 » 0.10** -0.03* -0.01 0.92 0.83 1.22 1.04 1.07 

6. Cacao 0.00 -0.08** 0.03 0.03** 0.00 0.86 1.21 1.08 1.03 

7. Cabuya 0.00 -0.02 0.06** 0.09** -0.05** -0.02 1.11 1.00 1.03 

8. Blanco Urub. 0.08** -0.01 0.05** -0.15** 0.05** 0.04** -0.02 1.28 1.32 

9. Umutu 0.07** 0.10** -0.02 0.00 -0.04** 0.01 -0.04** -0.05** 1.19 

o
 
H
 Morocho Aya. -0.02 0.05** 0.00 -0.04** 0.02 -0.02 0.01 0.02 -0.02 

LSD,q for crosses: 0.12 cm. 
*,** Significant at 0.05 and O.Ol probability levels, respectively. 
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The average number of kernels per row for cultivars per 

se was 23 and ranged from 17 kernels per row for Morocho 

Ayacuchano to 27 kernels for ChalgueAo (Table 25) . Chalguefio 

had the highest estimates of GCA effects (2.44) and cultivar 

effects (3.97). Morocho Ayacuchano, Blanco Urubamba, and 

Umutu had the lowest values for GCA effects (-2.07, -2.01, 

and -0.40, respectively). Morocho Ayacuchano also had the 

lowest cultivar effect (-5.31) although it had the highest 

Table 25. Average kernels per row for ten cultivars 
of maize per se and in crosses and estimates 
of GCA® effects (ĝ ), cultivar effects (v̂ ), 
and cultivar heterosis effects (ĥ ) 

Kernels per row 
Cultivar oer se crosses a. Vi hi 

1. Cacahuazintle 23 25 0.37** 0.26 0.24 
2. Chalquefto 27 26 2.44** 3.97** 0.46* 
3. Conico 7 26 25 1.42** 3.61** 1 o

 
w 00
 » 

4. INIAP 153 23 24 -0.32** 1 o
 

M O
 1 o
 

to
 

5. Mor. Ecuat. 21 24 0.17** -1.60** 0.97** 
6. Cacao 22 24 0.12* 1 o

 
w
 00
 » 0.31 

7. Cabuya 23 23 0.26** 0.19 0.17 
8. Blanco Urub. 22 22 -2.01** -0.67** -1.68** 
9. Umutu 23 24 -0.40** 0.04 1 o

 

to
 » 

10. Mor. Ayac. 17 22 -2.07** -5.31** 0.59** 

Mean 23 24 

LSD^o.05) for cultivars per se: 1.6 kernels. 
LSD^o.05) cultivars in crosses: 0.5 kernels. 
® General combining ability. 

*,** Significant at 0.05 and 0.01 probability levels. 
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cultlvar heterosis effect (0.59), which would explain its 

good performance in crosses. 

Chalguefto crossed with Morocho Ecuatoriano and with 

INIAP 153 had the greatest number of kernels per row (29 and 

28, respectively), and also had the highest estimates for 

SCA effects (1.8 and 1.3) (Table 26). Crosses between 

cultivars from the same country had negative SCA effects, 

except for the cross Blanco Urubamba x Morocho Ayacuchano 

(0.6). The lowest SCA effect was for Chalguefio x Conico 7 

(-2.0). This cross also had negative values for MP and HP 

heterosis, along with Cacao x Blanco Urubamba, Cabuya x 

Blanco Urubamba, and Blanco Urubamba x Umutu (Table A20). 

The highest HP heterosis was 12.1% for Cacahuazintle x 

Cabuya. 



Table 26. Average kernels number per row over seven locations (above diagonal) and 
specific combining ability effects (below diagonal) for 45 crosses among 
ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle 26 25 24 25 26 26 23 25 21 

2. Chalqueno -0.8** 26 28 29 27 27 25 26 24 

3. Conico 7 -0.7** -2.0** 25 26 27 27 24 25 23 

4. INIAP 153 

H
 

O
 1.3** 

M
 

O
 23 23 23 22 24 23 

5. Morocho Ecuador 

H
 

0
 

1 1.8** o
 

to
 

-1.5** 24 25 22 24 22 

6. Cacao 1.1** 

H
 

0
 

1 1.5** -0.8** 
o
 

o
 23 21 23 24 

7. Cabuya 1.0** 0.5** 1.1** -0.9** o
 

to
 

-1. 5** 22 24 23 

8. Blanco Urubamba 0.7** 0.1 0.6** 0.4* 1 o
 

to
 

-1. 3** -0 .9** 22 21 

9. Umutu 0.4* 1 o
 
w
 

-0.2 o
 

w o
 

to
 

-0. 5** 0 .3 -0. 0 22 

10. Morocho Ayacucho -1.7** -0.5** -0.8** 0.9** -0.6** 1. 8** 0 .3 0. 6** 1 o
 

H
 

LSD<0 05) for crosses: 1.6 kernels. 
*,** Significant at 0.05 and O.Ol probability levels, respectively. 



73 

SUMMARY AND CONCLUSIONS 

Diallel crosses among ten cultivars of highland 

tropical maize were made at Cajamarca, Peru, during the 

growing season 1990-1991. The ten cultivars included were 

Cacahuazintle, ChalqueAo, and Conico 7 from Mexico, INIAP 

153 and Morocho Ecuatoriano from Ecuador, Cacao and Cabuya 

from Colombia, and Blanco Urubamba, Umutu, and Morocho 

Ayacuchano from Peru. 

Eight paired rows of 22 plants per row were used to 

produce the crosses. At harvest, ears belonging to the same 

cross were hand shelled and bulked. Seed for making crosses 

and for evaluation per se were obtained from the 

International Center for Maize and Wheat Improvement 

(CIMMYT) for the Mexican cultivars, and from the 

corresponding National Maize Program for the Colombian, 

Ecuatorian, and Peruvian cultivars. 

The ten cultivars, their 45 crosses, and a local 

check were evaluated in a 7 x 8 rectangular lattice with 

two replications during the 1991-1992 growing season at 

seven locations: Santa Catalina (2950 m.a.s.l.) and 

Chuquipata (2410 m.a.s.l.) in Ecuador; Pairumani (2580 

m.a.s.l.) in Bolivia; Banos del Inca (2754 m.a.s.l.), Pampa 

(2650 m.a.s.l.), Anta (2650 m.a.s.l.), and Jangas (2700 

m.a.s.l.) in Peru. 
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The experimental unit was a two-row plot, each row 

included 11 hills with two plants per hill. The distance 

between rows and hills was 0.80 m and 0.50 m, respectively, 

to give a plant stand equivalent to 50000 plants per 

hectare. 

Analyses of variance per location and combined across 

locations were performed for the following traits: grain 

yield (t/ha) adjusted to 15% humidity, 50% female flowering 

(days), grain moisture content (%), plant height (cm), ear 

height (cm), root lodging (%), stalk lodging (%), ear volume 

(cmf), kernel depth (cm), and number of kernels per row. The 

total variability among entries (cultivars and their 45 

crosses) was partitioned following the analysis II and III 

of Gardner and Eberhart (1966). A mixed model was used with 

locations considered as a random effects and cultivars 

considered as fixed effects. 

Highly significant differences for locations, for 

entries, and for the interaction locations x entries in all 

traits were detected in the combined analysis of variance 

across locations. Additive gene effects seemed of greater 

importance in the expression of all traits except yield 

because of the highly significant cultivar effects and 

general combining ability (6CA) effects, which accounted for 

most of the total variability among entries and among 

crosses, respectively. Heterosis effects were significant 
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for female flowering, plant height, stalk lodging, ear 

volume, kernel depth, and kernel number per row. Specific ' 

combining ability (SCA) effects were the more important 

component of heterosis, though they showed no statistical 

significance for grain moisture content, plant height, ear 

height, and root lodging. 

For yield, cultivar effects and GCA effects were highly 

significant. Heterosis effects (75%), however, were more 

important in their contribution to the total variability 

among entries. SCA effects accounted for 58% and GCA 

accounted for 42% of the variation among crosses, suggesting 

that nonadditive gene effects were more important than 

additive effects in the expression of heterosis of yield. 

All three components of heterosis were significant for grain 

yield. 

The interactions of locations x cultivar effects and of 

locations x GCA effects were highly significative for all 

characteristics considered in this study. The location x 

heterosis interaction was significant only for yield, grain 

moisture content, and ear volume. 

All cultivars had greater yields in crosses compared 

with their yields per se, ranging from 3.46 t/ha for crosses 

with Cacao as one parent to 0.69 t/ha for crosses with 

Blanco Urubamba as one parent. The cultivar Cacao had the 

lowest yield per se (3.22 t/ha) but Cacao had the highest 
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cultlvar heterosis effect (1.06) which was because of its 

excellent combining ability. Average yield of INIAP 153 and 

Blanco Urubamba was 5.76 t/ha per se, and they also had the 

highest cultlvar effects (1.12). INIAP 153 and Blanco 

Urubamba had significant estimates of GCA effects, but they 

had a relative low performance in crosses compared with the 

other cultivars as Indicated by their negative cultlvar 

effects. Cacahuazintle and Conlco 7 had negative values for 

both GCA (-0.08 and -0.04) and cultlvar effects (-0.85 and 

-0.61) but had positive and highly significant cultlvar 

heterosis (0.34 and 0.26, respectively). The lowest yield in 

crosses was for Morocho Ayacuchano (5.43 t/ha), which also 

yielded poorly as cultlvar per se (3.97 t/ha) and had the 

lowest value for cultlvar heterosis (-0.72). 

Heterosis for yield, expressed as percentage of the 

mid-parent (MP) value, was positive for all crosses. High 

parent (HP) heterosis was negative for only four of the 45 

crosses. In this study, crosses between cultivars from the 

same country tended to express less heterosis than crosses 

between cultivars from different countries. Negative HP 

heterosis was obtained by Blanco Urubamba x Morocho 

Ayacuchano (-10.06%), Umutu x Morocho Ayacuchano (-10.63%), 

and INIAP 153 X Morocho Ecuatorlano (-10.94%). INIAP 153 x 

Morocho Ecuatorlano was the lowest yielding cross at 5.13 

t/ha. Crosses among Cacahuazintle, ChalqueAo, and Conlco 7 
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with Cacao, Morocho Ecuatoriano, and Cabuya ranked among the 

top ten crosses for HP heterosis. Cabuya x Blanco Urubamba 

(7.37 t/ha) and INIAP 153 x Umutu (7.55 t/ha) had 28.0% and 

31.1% HP heterosis, respectively. Cacao x Cacahuazintle 

(8.01 t/ha) had the highest yield among crosses with 111.2% 

heterosis over Cacahuazintle, the highest yielding parent of 

this cross. 

The cultivars considered in this study can be grouped 

in earlier flowering cultivars, 76 to 85 days, 

(Cacahuazintle, Chalguefio, Conico 7, and Morocho 

Ayacuchano), medium late flowering cultivars, 102 to 108 

days, (INIAP 153, Cabuya, Blanco Urubamba, and Umutu), and 

later, 119 and 121 days, for Cacao and Morocho Ecuatoriano, 

respectively. The earlier flowering group was characterized 

by having shorter plant height (176 cm to 200 cm), and ear 

height (89 cm to 107 cm). The late and medium-late groups 

were taller in height (210 cm to 251 cm), and had a higher 

ear placement (119 cm to 157 cm). Cacahuazintle, Chalguefio, 

and Conico 7 had the greatest incidence of root lodging 

(8.87%, 12.49%, and 11.96%, respectively), and stalk lodging 

(19.40%, 11.64%, and 11.82%, respectively). For the other 

cultivars root lodging ranged from 1.55% (Cacao) to 7.65% 

(Cabuya). and stalk lodging ranged from 3.14% (INIAP 153) to 

7.28% (Umutu). 

For female flowering, 87% of the crosses expressed 
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negative MP heterosis. Crosses involving Cacahuazintle, 

Morocho Ecuatoriano, Cacao, and Umutu required fewer number 

of days to 50% female flowering, while crosses that included 

INIAP 153 and Morocho Ayacuchano required greater number of 

days to 50% female flowering. The cross Cacahuazintle x 

Umutu was among the earliest (86 days) for female flowering 

and had the lowest MP heterosis of -8.27%. 

Cultivar heterosis and specific combining ability (SCA) 

effects were not significant for grain moisture content, 

plant height, ear height, and stalk lodging. When these 

parameters are not significant, inferences about the genetic 

potential of the cultivars can be based solely on cultivar 

effects (Miranda and Vencovsky, 1984). In this respect, 

Cacahuazintle, ChalqueAo, Cacao, and Morocho Ayacuchano had 

negative and significant cultivar effects for plant height 

and ear height. The three Mexican cultivars and Morocho 

Ayacuchano also had negative cultivar effects for grain 

moisture content. For root lodging, the cultivars Cacao, 

INIAP 153, and Morocho Ecuatoriano are expected to have 

lower incidence of root lodging in crosses, whereas these 

same cultivars, together with cabuya and Umutu, would have 

lower incidence of stalk lodging. 

Values for MP heterosis were mostly negative among 

crosses (84%) for grain moisture content. For plant height 

and ear height, 13% and 27% of all crosses, respectively. 
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had negative MP heterosis. For root lodging, values of MP 

heterosis ranged from -47.8% for the cross Chalguefio x 

Cabuya, to 208.0% for Morocho Ecuatoriano x Cacao; these two 

cultivars had the lowest incidence of root lodging per se. 

MP heterosis for stalk lodging was between -54.9% (Cacao x 

Morocho Ayacuchano) and 81.0% (Conico 7 x INIAP 153); 44% 

and 73% of the crosses had negative MP heterosis for both 

root and stalk lodging. 

Blanco Urubamba (318.0 cmf) and Umutu (329.9 cm̂ ) 

had the highest ear volume among cultivars, and the highest 

values for cultivar effects (68.9 and 80.1, respectively). 

The lowest ear volume was for Cacao (195.6 cm̂ ) , Morocho 

Ayacuchano (202.0 cm̂ ), and Morocho Ecuatoriano (211.8 cm̂ ); 

these cultivars had estimates of -54.4, -47.9, and 38.1 for 

cultivar effects. Forty-nine percent of the crosses had 

positive HP heterosis. Crosses between Cacahuazintle, 

Chalguefio, and Conico 7 with Blanco Urubamba and Umutu 

had the highest ear volume. 

Blanco Urubamba (1.40 cm) and Umutu (1.30 cm) had the 

highest values for kernel depth, and they also had the 

highest values for cultivar effects (0.28 and 0.18, 

respectively). Morocho Ecuatoriano, Cacao, and Cabuya had 

values lower than one centimeter, and they also had negative 

and significant cultivar effects. Cacahuazintle and 

Chalguefio had the same positive and significant cultivar 
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heterosis effects (0.06); therefore, crosses involving these 

cultivars should result in a greater kernel depth. Positive 

HP heterosis was obtained in 31% of the crosses for kernel 

depth. The cross with the best heterotic response for kernel 

depth was Chalgueflo x Morocho Ayacuchano (1.32 cm), with 

9.4% HP heterosis. 

The average number of kernels per row was 23, ranging 

from 17 (Morocho Ayacuchano) to 27 (Chalgueno). 

Cacahuazintle, Chalquefio, and Conico 7 had the highest 

positive GCA effects (0.37, 2.44, and 1.42, respectively). 

These cultivars also had positive cultivar effects and their 

crosses were among those with the highest HP heterosis. 

Blanco Urubamba and Umutu had negative GCA effects and 

cultivar heterosis. Crosses involving Blanco Urubamba had 

either low or negative HP heterosis. Fifty percent of 

crosses were above the highest parent. Cacahuazintle x 

Cabuya had the highest HP heterosis (12.1%). 

Cacahuazintle, Chalgueno, and Conico 7 had a similar 

heterotic pattern and could be intermated to form a single 

population for recurrent selection. These cultivars flowered 

at the same time and had similar plant and ear heights. For 

yield Cacahuazintle and Conico 7 had negative GCA effects 

and cultivar effects but for Chalgueno these effects were 

positive and highly significant which suggest gains in yield 

during selection. The inclusion of Morocho Ayacuchano within 
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this group would be useful for improving resistance to root 

and stalk lodging, because Cacahuazintle, Chalguefio, and 

Conico 7 had the highest percentages of root and stalk 

lodging. Morocho Ayacuchano had negative cultivar effects 

for root and stalk lodging. 

The Mexican cultivars generally showed excellent 

combining ability for all traits. Their crosses were among 

the better crosses for greater yields, earliness in 

flowering, shorter plants, less lodging, higher ear volume, 

better kernel depth, and greater number of kernels per row. 

Cacahuazintle crossed with Cacao was first in yield, and 

had the highest HP heterosis for yield. Cacahuazintle with 

Umutu for female flowering, with INIAP 153 for plant height, 

and with Morocho Ayacuchano for stalk lodging, ranked first, 

third, and first, respectively, for mid-parent heterosis. 

Another group could be formed by intercrossing INIAP 

153, Blanco Urubamba, and Umutu. These cultivars had the 

highest yields per se and had similar female flowering 

dates. Their highly significant GCA effects and cultivar 

effects for yield would allow progress towards the increase 

of alleles favoring higher productivity in a recurrent 

selection scheme. Besides, these cultivars exhibited 

negative and significant GCA and cultivar effects for root 

and stalk lodging. In addition, they also had the highest 

per se values for ear volume and kernel depth, with highly 
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significant GCA and cultivar effects for these traits. If 

the breeding objectives consider these characteristics, 

genetic gains should be achieved. 

Among the medium late cultivars, the cross Cabuya x 

Blanco Urubamba was the most promising. These two cultivars 

had similar days to female flowering, and their cross 

yielded 7.37 t/ha with 28% HP heterosis. Also, MP heterosis 

for this cross was negative for days to female flowering, 

plant height, ear height, root lodging, and stalk lodging. 

Cabuya combines well with INIAP 153 (6.71 t/ha, and 16.5% HP 

heterosis), and with Umutu (7.04 t/ha, and 24.1%) HP 

heterosis. 

Cacao had excellent combining ability for yield. Five 

of Cacao's crosses were among the top ten in yield, but 

Cacao and Morocho Ecuatoriano were the latest in flowering; 

they were 11 and 13 days later than INIAP 153 and Cabuya. 

Morocho Ayacuchano had poor performance per se in most 

traits, perhaps due to lack of adaptation to the 

environments in which the experiments were conducted. 

Nevertheless, it performed well in crosses for plant height, 

stalk lodging, ear volume, and kernel depth. 
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APPENDIX 



Table Al. Analysis of variance for grain yield (t/ha) for ten maize cultivars and their 
45 diallel crosses at seven locations 

Mean souares for each location 
Source df Banos Pamna Anta Janaas S.Catalina Chuouioata Pairumani 

Replication 1 1.34 0.01 11.71 0.52 43.47** 12.64** 0.53 

Entries 54 7.50** 1.30** 7.61** 3.28 6.06** 4.50** 5.82** 

Varieties 9 17.06** 3.89** 7.55* 4.74 22.54** 8.12** 9.33** 

GCA* 9 10.80** 3.32** 8.27** 5.53** 12.46** 7.62** 7.46** 

Heterosis 45 5.59** 0.78* 7.62** 2.99 2.76** 3.77** 5.11** 

Average 1 102.35** 7.10** 43.69** 54.55** 25.01** 69.06** 82.53** 

Variety 9 4.25 0.59 6.87* 2.25 3.12* 1.11 1.07 

Specific 35 3.17 0.64 6.78** 1.71 2.04* 2.60** 3.94** 

Error 54 2.09 0.43 2.89 2.61 1.15 0.85 1.39 

C.V. (%) 
S.D. 
Mean 

15.76 
1.45 
9.18 

35.76 
0.66 
1.85 

23.75 
1.70 
7.17 

33.74 
1.61 
4.78 

14.59 
1.07 
7.35 

19.84 
0.92 
4.65 

15.88 
1.18 
7.44 

^ General combinig ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A2. Values of high-parent heterosis (%) (above diagonal) and mid-parent heterosis (%) 
(below diagonal) for grain yield averaged over seven locations for 45 
crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle 3. 6 30.0 18.2 50.3 111.2 34.5 11.3 17.6 35.7 

2. Chalgueno 17.6 1.1 20.8 32.8 44.8 45.8 24.8 38.6 6.0 

3. Conico 7 34.0 11. 5 34.5 52.5 86.7 41.5 26.7 13.7 7.1 

4. INIAP 153 42.7 30. 1 58.4 -10.9 14.7 16.5 9.8 31.1 15.1 

5. Morocho Ecuador 57.6 43. 8 55.2 3.2 43.2 18.0 -4.1 21.8 15.6 

6. Cacao 128.8 75. 3 107.9 47.0 61.9 12.5 8.3 12.6 65.6 

7. Cabuya 53.8 47. 8 57.6 24.0 29.5 37.6 28.0 24.2 12.0 

8. Blanco Urubamba 34.3 31. 1 48.2 9.8 11.1 38.8 36.3 14.2 -10.1 

9. Umutu 41.0 48. 3 33.0 32.2 40.2 43.8 31.1 15.1 -10.6 

10. Morocho Ayacucho 38.8 17. 6 8.0 36.3 18.5 83.0 25.6 6.5 5.1 



Table A3. Analysis of variance for female flowering (days) for ten maize cultiveurs 
and their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamoa Anta Janaas S.Catalina Chuouinata Pairvunani 

Replication 1 1. 8 27. 5 8. 2 96. 4 1. .5 6. 6 10. 5 

Entries 54 251. 6** 136. 0** 202. 3** 339. 1** 331 .5** 222. 1** 318 .3** 

Varieties 9 1413. 4** 731. 3** 1104. 9** 1466. 2** 1878 .1** 1193. 3** 1753 .8** 

GCA* 9 861. 5** 456. 1** 681. 6** 990. ,1** 1089 .6** 787. 9** 1068 .3** 

Heterosis 45 19. 3** 17. 0* 21. 8* 113. .7 22 .1** 27. 8** 31 .1** 

Average 1 201. 1** 1. 6 10. 5 243. .9 275 .1** 279. 6** 215 .4** 

Variety 9 18. 7** 17. 4 37. 6** 44. .2 37 .8** 15. 4 32 .2* 

Specific 35 14. 2** 17. 3* 18. 0 127. .9 10 .8** 23. 9** 25 .6* 

Error 54 2. 7 9 .8 12 !.3 117 .8 5 .0 7. 9 12 .3 

C.V. (%) 10. 0 3. 2 3. 4 11 .0 2 .2 3. 3 3 .7 
S.D. 1. 6 3. 1 3. 5 10 .8 2 .2 2. 8 3 .5 
Mean 94. ,5 97. 8 102. 3 99 .0 102 .6 85. ,1 94 .0 

® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A4. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for female flowering averaged over seven 
locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle -0.7 -2.3 -10.3 -19.6 -18.8 -14.7 -13.8 -16.4 —6.6 

2. Chalqueno -0.3 -1.7 -9.5 -16.0 -16.5 -11.3 

II
) N
 

H
 

1 -12.4 -5.7 

3. Conico 7 -1.5 -0.7 -16.6 -21.9 -15.8 -13.2 -12.1 -12.8 -7.2 

4. INIAP 153 -2.5 1.5 -5.7 -2.4 -9.6 -0.7 -1.3 -8.5 -11.8 

5. Horocho Ecuador -5.5 -1.0 -7.2 2.7 —6.8 -9.0 -13.9 -13.5 -22.7 

6. Cacao —5.1 -2.1 —0.5 —5.0 -6.1 -9.0 -12.3 -11.7 -17.0 

7. Cabuya —4.5 —0.4 -1.7 —0.6 -3.7 —4.4 -4.3 -6.3 -15.2 

8. Blanco Urubamba -5.7 -4.0 -2.7 1.1 -6.7 -5.6 -1.8 -4.5 -12.4 

9. Umutu -8.3 -3.5 -3.2 -6.7 —6.6 —5.4 -4.3 -4.1 -13.9 

10. Morocho Ayacucho-1.3 -0.7 -3.2 3.5 —5.0 1.5 —0.4 0.6 -0.7 



Table A5. Analysis of variance for grain moisture content (%) for ten maize cultivars 
and their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos 

(0 1 Anta Janaas S .Catalina 

1 1 Pairumani 

Replication 1 2.3 3.2 5.2 19.2 88.6** 0.0 90.2* 

Entries 54 94.3** 188.4** 25.3** 41.0** 56.8** 34.3** 58.3** 

Varieties 9 531.0** 976.3** 97.3** 183.5** 168.4** 41.3** 260.3** 

GCA* 9 328.9** 615.5** 54.9** 136.0** 182.3** 36.6** 172.8** 

Heterosis 45 7.0 30.8 10.9* 12.5 34.5** 32.9** 17.9 

Average 1 27.6* 26.9 1.9 4.6 215.7** 26.5* 48.8 

Variety 9 12.1 36.4 17.3 8.0 51.4** 28.8** 15.9 

Specific 35 5.0 29.4 9.6 13.9 24.9** 34.2** 17.5 

Error 54 6.7 22.5 6.3 11.1 9.9 4.8 20.7 

C.V. (%) 7.0 13.9 7.3 10.3 11.8 11.2 23.2 
S.D. 2.6 4.7 2.5 3.3 3.1 2.2 4.5 
Mean 37.1 34.0 34.6 32.2 26.6 19.5 19.6 

^ General combining ability. 
*,** Significant at 0.05 and 0.01 probability level, respectively. 



Table A6. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for grain moisture content (%) averaged 
over seven locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle -5.8 -5.9 -22.5 -23.0 -13.7 -12.7 -23.8 -18.2 -8.7 

2. Chalqueno -1.5 -13.8 -22.3 -20.3 -15.8 -13.0 -24.0 -12.6 1.8 

3. Conico 7 -3.4 -7.6 -24.4 -33.7 -20.1 -14.5 -23.1 -22.1 -18.3 

4. INIAP 153 -5.9 -9.1 —6.4 -2.5 -8.6 -5.2 -2.9 -3.0 -6.7 

5. Morocho Ecuador -4.8 -4.9 -16.4 -0.2 -12.7 -15.4 -6.9 -9.7 -21.9 

6. Cacao 0.4 -5.7 -5.1 -3.9 —6.0 -9.7 -11.3 -3.9 -13.0 

7. Cabuya 1.2 -3.1 1.3 0.2 -8.7 -9.3 -14.1 -6.4 -16.9 

8. Blanco Urubamba -5.6 -10.5 -2.8 -0.3 -6.7 —4.4 -7.0 -8.6 -19.8 

9. Umutu —5.0 -2.3 -7.5 2.2 -2.6 -3.7 -6.2 -1.2 -13.2 

o
 

H
 Morocho Ayacucho -1.3 5.5 -9.6 3.7 -9.5 —6.0 -10.3 -6.9 —6.0 



Table A7. Analisis of variance for plant height (cm) for ten maize cultiveirs and 
their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamoa Anta Janaas S .Catalina Chuauioata Pairumani 

Replication 1 42. 0 3852. 7** 1649. 8 796. 5 2953. 6** 10486. 1** 667. 6 

Entries 54 1281. 3** 946. 3** 816. 6 983. 5** 719. 8** 787. 8* 2967. 7** 

Varieties 9 5699. 2** 4916. 5** 944. 4 3761. 1** 3526. 3** 3016. 7** 13914. 5** 

GCA® 9 3336. 2** 3311. 6** 504. 6 2144. 9** 2011. 8** 2686. ,4** 11329. 6** 

Heterosis 45 397. 7** 211. 6 791. 0 427. 9 158. 5 342. ,1 778. 4 

Average 1 1199. 3** 51. 7 737. 0 4125. 3** 321. 6 624. .5 3711. 9* 

Variety 9 342. 0 138. 8 1408. 9 348. 7 276. 0 288, .8 947. 7 

Specific 35 389. 1* 234. 9 634. 9 342. 7 124. 9 347, .7 651. 0 

Error 54 195. 9 291. 7 1012. 2 302. 5 134. 1 420 .1 673. 5 

C.V. (%) 5. 6 10. 6 14. 1 8. 6 5. 6 9 .4 8. 9 
S.D. 14. 0 17. 1 31. 8 17. .4 11. 6 20 .5 25. 9 
Mean 248. 8 161. 3 225. 3 202. ,1 205. 6 217 .8 292. 4 

® General combining ability. 
*;** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A8. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for plant height averaged over seven 
locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuazintle 0.0 1.1 -10.5 -7.4 3.4 -5.8 -3.5 -2.8 -2.9 

2 .  Chalgueno 0.9 -2.0 -7.7 -8.4 -2.0 -1.0 -3.9 -4.4 -4.5 

3. Conico 7 4.0 1.7 -6.7 -8.7 7.5 1.7 —3 . 6 —0.6 3.9 

4. INIAP 153 -0.8 1.5 6.0 3.7 -4.6 2.3 -0.1 -1.8 -9.6 

5. Morocho Ecua. 3.8 1.9 5.0 5.1 -4.9 -1.8 -4.7 0.7 -14.5 

6. Cacao 6.8 0.4 14.3 2.6 3.5 -0.9 3.8 3.7 3.4 

7. Cabuya 0.9 5.1 11.8 6.2 3.3 2.8 -3.2 -0.7 -7.9 

8. Blanco Urubamba 4.5 3.2 7.2 2.4 -1.0 9.0 —2.0 -0.9 -12.4 

9. Umutu 4.6 2.1 9.9 1.3 5.2 8.1 -0.2 -0.1 -8.2 

o
 

H
 Horocho Ayacucho 2.6 1.7 6.7 5.1 0.6 12.6 3.8 -0.2 3.9 



Table A9. Analisls of variance for ear height (cm) for ten maize cultivars and 
their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamoa Anta Janaas S .Catalina Chuouioata Pairumani 

Replication 1 1191. 3* 2553. 6** 1319. 6 692. 5 1237. 8** 5264 .7** 738. 4 

Entries 54 1360. 5** 425. 8** 939. 6 595. 5** 842. 8** 765 .9** 2673. 7** 

Varieties 9 6414. 1** 2050. 7** 1256. 8 2381. 3** 4241. 1** 3069 .9** 13820. 6** 

GCA® 9 3799. 9** 1434. 8** 649. 8 1342. 3** 2602. 6** 2743 .4** 10795. 9** 

Heterosis 45 349. 8* 100. 8 876. 2 283. 4 163. 2 305 .1 444. 4 

Average 1 456. 8 87. 4 124. 7 1700. 6** 268. .4 30.8 1095. 8 

Variety 9 343. 5 53. 8 1820. 5 243. 2 235. .3* 495 .1 565. 8 

Specific 35 348. 3* 113. 6 654. 8 195. 3 141. .6 264. 1 394. 5 

Error 54 204. 8 159. 4 1115. 8 230. 0 109, .7 387 .4 483. 0 

C.V.(%) 9. 7 14. 0 23, 6 13. 8 9 .6 14. 5 13. 2 
S.D. 14. 3 12. 6 33. .4 15. 2 10 .5 19. 7 22. 0 
Mean 147. ,9 90. 1 141. .4 109. ,7 108 .9 135 .4 166. 0 

® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table AlO. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for eeu: height averaged over seven 
locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuazintle 1.6 2.8 -14.9 -12.0 3.6 -13.2 —3.6 -6.9 -6.3 

2. Chalqueno 2.6 -0.8 -17.1 -18.3 1.7 -4.8 0.8 -10.8 -7.6 

3. Conico 7 6.6 3.8 -18.4 -18.1 12.3 -1.8 -5.5 -3.7 0.4 

4. INIAP 153 1.9 -1.5 0.6 3.8 -12.6 0.2 -5.9 —8.8 -21.5 

5. Morocho Ecuador 6.8 -1.5 2.3 5.6 -12.9 -4.0 -13.3 -6.5 -24.1 

6. Cacao 9.9 6.9 23.2 —0.5 0.6 -5.5 7.1 4.1 4.8 

7. Cabuya -0.1 8.5 16.4 5.0 2.4 3.0 -4.7 -1.6 -17.7 

8. Blanco Urubamba 6.7 10.6 8.0 2.7 -3.8 12.1 —0.5 -5.2 -16.0 

9. Umutu 5.2 0.0 12.3 -2.6 1.6 11.4 0.4 -3.0 -18.9 

10. Horocho Ayacucho 1.4 0.9 5.0 0.1 -1.9 19.7 1.1 -0.3 -1.9 



Table All. Analysis of variance for root lodging (%) for ten maize cultivars and 
their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamoa Anta Janaas S .Catalina Chucruioata Pairumani 

Replication 1 71.1 59.9** 0.2 16.3 1605.1** 24.8 19.7 

Entries 54 36.0 6.3 0.4 9.8* 214.5 171.4 21.6* 

Cultivars 9 73.1** 5.1 0.4 16.2* 423.2** 487.5** 27.5 

GCA* 9 57.8* 7.8 0.3 9.3 434.4** 271.8* 24.9 

Heterosis 45 28.2 6.5 0.4 8.5 172.8 108.2 20.4 

Average 1 12.4 0.5 0.3 40.8* 1.5 323.2 18.3 

Cultivar 9 8.5 7.1 0.5 10.9 247.5* 128.0 50.8* 

Specific 35 33.7 6.6 0.4 6.9 158.5 96.9 12.6 

Error 54 25.9 5.8 0.5 6.0 147.8 111.3 13.5 

C.V.(%) 
S.D. 
Mean 

154.1 
5.2 
3.3 

164.0 
2.4 
1.5 

402.6 
0.7 
0.2 

103.8 
2.5 
2.4 

96.6 
12.2 
12.7 

39.7 
10.5 
26.5 

101.2 
3.7 
3.6 

® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A12. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for root lodging averaged over seven 
locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle -4.1 -6.9 34.2 -10.1 43.1 -35.5 11.4 5.8 -2.2 

2. Chalgueno 12.1 -2.2 -34.5 -50.5 -32.8 -57.9 2.3 -49.9 -38.6 

3. Conico 7 6.9 -0.1 -53.3 -44.4 -48.5 -52.7 -28.7 -6.2 -41.6 

4. INIAP 153 93.0 2.6 -27.6 48.7 12.3 -30.6 -17.9 1.7 49.6 

5. Morocho Ecuador 41.8 -16.9 -7.3 76.2 154.3 -38.0 30.7 -33.6 13.8 

6. Cacao -3.2 19.5 —8.8 55.2 208.0 -64.8 -6.0 -20.9 —8.6 

7. Cabuya -30.8 -47.8 -42.3 —4.5 -5.4 -41.4 -22.2 -52.1 3.6 

8. Blanco Urubamba 26.6 32.9 -8.7 8.5 93.1 52.8 -17.3 15.7 32.7 

9. Umutu 23.0 1 w w 22.3 31.9 -3.3 27.2 -47.7 18.9 -31.0 

o
 H
 Morocho Ayacucho 11.5 -20.0 -25.2 97.2 67.8 48.3 10.5 33.2 -29.3 



Table A13. Analisis of variance for stalk lodging (%) for ten maize cultivars and 
their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamna Anta Janaas S.Catalina Chuouioata Pairumani 

Replication 1 701.5** 90.0* 19.5 4.7 19.6 121.6 49.1 

Entries 54 79.3** 56.2** 30.4 24.4* 133.5** 115.5** 16.1 

Varieties 9 213.6* 174.9** 31.4 94.1** 481.7** 346.2** 20.2 

GCA* 9 169.5** 54.4** 34.6 53.9** 401.7** 114.9** 15.1 

Heterosis 45 52.4* 32.4* 30.2 10.5 63.8* 69.4* 15.3 

Average 1 29.2 357.2** 3.1 95.1* 17.0 221.1* 8.5 

Variety 9 42.6 57.6** 10.2 14.4 33.7 120.4** 8.7 

Specific 35 55.6* 16.6 36.1 7.1 72.9* 51.9 17.2 

Error 54 31.2 18.3 26.5 13.7 36.1 41.1 16.3 

C.V.(%) 71.3 79.8 486.5 89.7 47.8 46.5 115.2 
S.D. 5.6 4.3 5.1 3.7 6.0 6.4 4.3 
Mean 7.8 5.4 1.1 4.1 12.6 13.8 3.5 

^ General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A14. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for stalk lodging (%) averaged over 
seven locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle -43.6 -13.3 -54.1 -65.7 -61.1 -58.8 -45.1 -54.4 -70.6 

2. Chalqueno -29.6 -38.4 —60.8 -45.5 -51.9 -46.0 -43.7 -24.0 -55.1 

3. Conico 7 7.7 -37.9 14.6 -31.1 -56.7 -57.9 -13.1 -14.4 -29.3 

4. INIAP 153 -21.0 -38.3 81.0 -23.3 -36.5 -53.4 -51.4 -44.9 -20.1 

5. Horocho Ecuador -42.2 -17.0 5.2 -17.5 7.9 -32.8 -22.2 -53.2 16.6 

6. Cacao -34.2 -26.1 -33.3 -32.9 10.0 8.8 -29.4 1 w
 
o
 

w
 

-15.5 

7. Cabuya -36.9 -28.5 -43.9 -39.0 -16.9 36.7 

0
 

N
 

H
 1 -29.2 -7.7 

8. Blanco Urubamba -16.3 -25.9 15.0 -36.1 -3.2 -10.8 -11.3 -14.3 42.8 

9. Umutu -33.7 -6.5 6.0 -23.0 -37.7 -6.1 -22.0 -6.3 53.8 

o
 

H
 Morocho Ayacucho-54.9 —40.5 -5.8 4.5 44.2 6.0 -7.6 44.1 69.5 



Table A15. Analysis of variance for ear volume (cm̂ ) for ten maize cultivars amd 
their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamoa Anta Janaas S. Catalina Chuouioata Pairumani 

Replication 1 1514. 8 3710. 8 774. 5 433. 0 34842. 4** 2829. 8 37. 1 

Entries 54 7045. 6** 3939. 9** 2688. 4 3410. 5** 9131. 4** 6250. 6** 5424. 0** 

Varieties 9 27446. 9** 12599. 2** 5326. 2* 6787. 9** 25430. 8** 17431. 1** 16641. 9** 

GCA® 9 16304. 1** 8529. 1** 3925. 9 6650. 8** 13664. 4** 15178. 2" 12310. 9** 

Heterosis 45 2965. 3** 2208. 0 2160. 8 2735. 0 5871. .5* 4014. 5 3180. 4* 

Average 1 39661. 8** 17414. 2** 2841. 6 46136. 9** 23505. .6* 20465. 3" 32360. 6** 

Variety 9 2293. 6 1928. 6 2316. 9 2078. 6 10113. .5** 3299. 9 2464. 7 

Specific 35 2089. 5 1845. 4 2101. 2 1663. 8 4276, .8 3728. 2 2530. 7 

Error 54 1370. 3 1948. 5 2258. 7 1777. 0 3213, .6 2593. 5 1998. 6 

C.V. (%) 9. 9 25. 2 17. 8 16. .6 25 .0 17. 7 13. 8 
S.D. 37. 0 44. 1 47. ,5 42. ,1 56 .7 50. ,9 44. ,7 
Mean 370. 7 175. 5 266. .8 254. .1 226 .3 287. .5 323. .7 

^ General combinig ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A16. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for ear volume averaged over seven 
locations for 45 crosses among ten maize cultivars 

Cultivar 1 2 3 4 5 6 7 8 9 10 

1. Cacahuazintle -0.2 -3.9 9.5 6.3 12.6 3.3 6.5 -3.0 5.5 

2. Chalgueno 3.7 -2.9 8.5 17.9 5.2 14.1 -4.3 3.1 16.0 

3. Conico 7 1.7 -1.1 2.7 5.6 18.3 11.9 -0.7 -11.1 1.0 

4. INIAP 153 11.7 15.0 10.8 -15.8 -5.4 1.1 -14.9 -2.5 -0.5 

5. Morocho Ecuador 16.7 24.8 9.8 -5.9 23.4 —8 . 0 -7.0 -11.9 18.9 

6. Cacao 28.0 15.6 27.8 9.5 28.3 -2.0 -1.3 —8.6 29.9 

7. Cabuya 5.4 16.2 16.0 5.3 -1.0 9.4 -15.9 -14.7 -2.9 

8. Blanco Urubamba 17.8 9.5 15.5 -7.6 11.7 22.4 -5.3 2.9 -12.4 

9. Umutu 8.9 19.7 4.9 7.6 7.3 14.8 -2.4 4.6 -17.1 

10. Morocho Ayacucho 18.3 25.5 7.5 13.5 21.7 32.0 6.8 7.3 2.9 



Table A17. Analysis of variance for kernel depth (cm) for ten maize cultivars cUid 
their 45 diallel crosses at seven locations 

Mean souares for each location 
Source df Banos Pamoa Anta Janaas S .Catalina Chuouioata Pairumani 

Replication 1 0.001 0.010 0.000 0.124* 1.163** 0.035 0.000 

Entries 54 0.091** 0.041 0.049** 0.034 0.169** 0.071** 0.088** 

Varieties 9 0.477** 0.066 0.165** 0.099** 0.586** 0.276** 0.414** 

GCA* 9 0.343** 0.078 0.144** 0.086** 0.384** 0.245** 0.274** 

Heterosis 45 0.014* 0.037 0.025 0.021 0.085 0.030* 0.024 

Average 1 0.123** 0.121 0.021 0.164** 0.475** 0.098* 0.200** 

Variety 9 0.009 0.065 0.027 0.026 0.109 0.029 0.018** 

Specific 35 0.012 0.027 0.025 0.015 0.068 0.028 0.020 

Error 54 0.008 0.040 0.018 0.022 0.059 0.018 0.027 

C.V.(%) 7.40 25.09 10.36 11.60 22.10 12.09 13.50 
S.D. 0.09 0.19 0.13 0.15 0.24 13.30 0.16 
Mean 1.24 0.79 1.29 1.28 1.10 1.10 1.20 

® General combinig ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A18. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for kernel depth (cm) averaged over seven 
locations for 45 crosses among ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuazintle 3.1 4.8 1.5 -4.4 -2.4 -5.1 3.1 3.4 7.3 

2. Chalqueno 6.6 0.6 3.9 2.7 1 H
 

M
 H
 

-9.8 -1.8 7.4 9.4 

3. Conico 7 7.1 1.8 2.4 

in e
 
H
 1 -5.9 -6.2 -0.5 —5.6 3.4 

4. INIAP 153 2.8 6.1 3.3 -15.0 -11.4 -9.1 -21.7 -11.1 -5.9 

5. Horocho Ecuador 7.5 18.9 2.5 -3.3 4.9 -11.4 

H
 
m
 
H
 1 -19.6 —6.5 

6. Cacao 13.1 4.8 11.1 3.7 8.7 -8.2 -13.9 -6.8 -10.0 

7. Cabuya 3.6 1.6 4.4 5.5 -8.5 -2.0 -20.5 -23.2 -9.6 

8. Blanco Urubamba 14.1 5.4 8.0 -14.3 6.8 8.6 -4.8 -8.6 -5.5 

9. Umutu 10.6 11.2 -1.0 -6.1 -4.2 2.1 -10.8 -5.2 -8.8 

10. Morocho Ayacucho 7.7 12.6 5.2 -5.1 5.5 4.7 -0.9 4.1 -2.8 



Table A19. Analysis of variance for number of kernels per row for ten maize cultiveurs 
and their 45 diallel crosses at seven locations 

Mean squares for each location 
Source df Banos Pamoa Anta Janaas S. Catalina Chuquipata Pairumani 

Replication 1 3.6 16.0 0.4 14.5 75.3** 0.0 11.1 

Entries 54 13. 1** 15.5** 15.4 8.8 13.7** 21.8** 17.3** 

Varieties 9 55.1** 48.5** 64.0** 21.2** 57.5** 54.8** 55.8** 

GCA* 9 36.7** 46.6** 37.7** 15.4** 41.0** 48.2** 50.9** 

Heterosis 45 4.7** 8.9* 5.5 6.3 4.9 15.2* 9.6** 

Average 1 81.2** 0.5 64.4** 99.1** 6.4 16.5 54. 0** 

Variety 9 3.3 13.0* 4.4 5.3 5.8 15.2 11.6** 

Specific 35 2.9 8.1 4.1 3.9 4.6 15.1* 7.8** 

Error 54 2.3 5.0 4.2 6.6 4.4 8.2 3.0 

C.V. (%) 
S.D. 
Mean 

5.7 
1.5 
26.7 

11.8 
2.2 
19.0 

8.1 
2.0 
25.3 

11.2 
2.6 
23.0 

9.7 
2.1 
21.7 

11.3 
2.9 
25.3 

6.4 
1.7 
26.9 

® General combining ability. 
*,** Significant at 0.05 and 0.01 probability levels, respectively. 



Table A20. Values of high-parent heterosis (%) (above diagonal) and mid-parent 
heterosis (%) (below diagonal) for kernel number per row averaged over 
seven locations for 45 Fj^ crosses êunong ten maize cultivars 

Cultivars 1 2 3 4 5 6 7 8 9 10 

1. Cacahuaz intle -2.1 -4.1 5.9 7.1 11.8 12.1 0.9 6.5 —9.6 

2. Chalqueno 5.2 -2.4 3.5 6.9 -0.5 2.4 -7.5 -3.2 -9.9 

3. Conico 7 2.4 -1.7 -3.5 -1.6 3.2 2.4 -8.1 -5.1 -13.8 

4. INIAP 153 6.7 12.0 3.8 —0.6 2.2 1.2 0.6 4.4 0.0 

5. Morocho Ecuador 11.6 19.3 9.1 2.8 9.2 8.1 0.0 5.9 -2.2 

6. Cacao 13.3 8.3 11.7 2.8 12.3 0.3 -6.4 2.5 7.6 

7. Cabuya 12.2 10.2 9.5 1.9 12.4 1.6 -6.2 5.9 -1.2 

8. Blanco Urubamba 3.0 1.3 0.0 —0.6 2.5 -5.8 -4.4 -4.7 -6.1 

9. Umutu 7.0 4.5 1.7 4.7 9.9 3.5 6.9 -3.2 —5.0 

10. Morocho Ayacucho 2.8 9.0 3.7 13.0 12.2 20.9 12.2 4.9 7.6 


