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ABSTRACT 

 Excess nutrients in lakes, rivers, and streams harm aquatic ecosystems.  Advanced 

treatment at wastewater treatment plants can reduce this pollutant load.  An innovative 

nutrient removal system, ANAMMOX, anaerobically converts ammonium and nitrite to N2 

gas.  Because this system requires a 1:1.31 NH4
+
 : NO2

-
 ratio, a partial nitrification system is 

coupled with the ANAMMOX system to provide the necessary substrates.  A hollow fiber 

membrane reactor was employed to create this partial nitrification system.  Gas mass transfer 

was first evaluated to determine the KLa oxygen transfer coefficient. Reactor parameters, 

such as mixing speed, membrane length, and gas pressure, were evaluated to determine how 

KLa was affected by these variables.  This hollow fiber membrane was then used to control 

oxygen delivery to the partial nitrification system, producing an effluent with ammonium and 

nitrite.  Controlling dissolved oxygen at low concentration selects for ammonium oxidizing 

bacteria, while nitrite oxidizing bacteria are suppressed.  This system effectively treated 

influent ammonium concentrations ranging from 50 mg/L NH4
+
-N to 250 mg/L NH4

+
-N.  

Real-time polymerase chain reaction (qPCR) was employed to verify the system preference 

for ammonium oxidizing bacteria.  Hollow fiber membrane aeration is effective for 

controlling oxygen transfer.   
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CHAPTER 1.  GENERAL INTRODUCTION 

 

Introduction 

Nutrients play an important role in the earth’s ecosystem.  Specifically, nitrogen is necessary 

for plant growth; this creates a dependence on nutrients for all species in our ecosystems.  

However, like many natural systems, there exists a natural balance necessary for maintaining 

healthy conditions.   

When discharged into waterways, nutrient pollution negatively impacts lakes, streams, rivers, 

and coastal areas, upsetting the nutrient balance.  Nitrogen and phosphorus cause 

eutrophication.  Eutrophication is the presence of excess nutrients in an ecosystem, which 

leads to algal blooms and hypoxia (low dissolved oxygen conditions).  Hypoxia and algal 

blooms harm the aquatic ecosystem, killing fish, reducing water quality, and changing the 

ecosystem characteristics.  The presence of nutrients is attributed to wastewater, agriculture, 

and the burning of fossil fuels.
1
  In the United States, 78 percent of coastal areas have been 

identified as demonstrating signs of eutrophication.
2
   

To mitigate environmental problems caused by nutrient discharge into waterways, regulators 

are looking to increase restrictions on point sources for nutrients.  Aquatic nitrogen-based 

nutrient contribution from sewage is estimated to be 12% in the United States.
1
   These point 

sources include wastewater treatment plants.  More stringent nutrient limitations are likely, 

requiring advanced nutrient removal treatment systems.   
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Conventional nutrient removal systems employed in many wastewater treatment plants 

require an energy intensive aeration system to supply oxygen.  A reduction of the oxygen 

requirement will result in operational cost savings.   

Additionally, isolating specific microorganisms improve operational efficiency.  A 

mixed-culture system requires excess aeration.  Varying biomass yields prevent 

slower-growing bacteria from flourishing and performing efficiently.  Developing an 

enriched culture of target organisms allows the system parameters to meet the direct needs of 

these organisms.   

Oxygen transfer was studied on a silicone hollow-fiber membrane.  Operation parameters 

were modified to determine the oxygen transfer coefficient for the membrane.  This 

membrane is then used in a partial nitrification study to serve as an aeration source and a 

surface for attached bacterial growth.   

Oxygen transfer study 

Oxygen transfer coefficient (KLa, units d
-1

) is a combination of “KL,” the liquid film transfer 

coefficient, and “a,” the ratio of membrane surface area to water volume.  This gas mass 

transfer coefficient allows for accurate integration of the membrane aerator into the system.  

The procedure will be performed at conditions representative of the partial nitrification study 

to calibrate the system as accurately as possible.  The gas transfer can be affected by many 

variables, such as tank mixing, reactor size, wastewater characteristics, and membrane 

properties.   
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Oxygen transfer is essential to the partial nitrification process.  The nitrification process is 

controlled by monitoring the dissolved oxygen in the reactor.  The oxygen transfer 

coefficient is used to determine these process characteristics.    

The clean water oxygen transfer coefficient is standardized.  This clean water transfer is used 

with experimental results to develop the KLa.  Variations in wastewater characteristics, tank 

size, and mixing can be accounted for through the use of correlation factors to compensate 

for field oxygen transfer rates. 

Nitrification 

Nitrification is the process by which ammonium (NH4
+
-N) is oxidized first to nitrite 

(NO2
-
-N) by ammonium oxidizing bacteria (AOB), and then to nitrate (NO3

-
-N) by nitrite 

oxidizing bacteria (NOB).  Due to a lower biomass yield, it is difficult for nitrifying 

organisms to compete with heterotrophic organisms required for BOD removal.
3
  For this 

reason, a reactor specifically designed for nitrification can be optimized for ammonium 

oxidation.   

Thesis Organization 

Two of the chapters of this thesis document consist of journal papers formatted for 

submission to specific scientific journals.  Chapter 2 discusses the oxygen transfer study.  My 

participation in chapter 2 included oversight and advising of data collection, assistance with 

analyzing the collected data to calculate KLa, and statistical analysis of the collected data and 

Box-Behnken model.  Chapter 3 examines the application of hollow fiber membranes in a 

partial nitrification system.  My participation in chapter 3 included treatment system 

construction, seeding and startup, operational monitoring, water quality testing, and data 
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collection.  Chapter 4 discusses additional data collected which was not included in the 

journal papers, as well as opportunities for future research.  Chapter 2 and Chapter 3 are 

formatted for submission to specific journals.   

Literature Review 

Partial nitrification has been studied by other researchers in the past.  The system is 

commonly coupled with the ANAMMOX process as a pre-treatment step providing 

ammonium and nitrite substrates.  Many systems utilize high temperature or limited sparging 

aeration to select for ammonium oxidizing bacteria and suppress nitrite oxidizing bacteria.  

Few studies have involved the use of a membrane system for oxygen delivery.  A literature 

review of some of these previous studies is covered in the appropriate sections of Chapter 2 

and Chapter 3.  Additional partial nitrification studies are summarized in this section.   

The partial nitrification process requires the activity of ammonium oxidizing bacteria (AOB), 

while suppressing the activity of nitrite oxidizing bacteria (NOB).  This can be accomplished 

by adding inhibitors for nitrite oxidizing bacteria, controlling dissolved oxygen and relying 

on oxygen affinity to suppress NOB, using pure cultures of AOB, controlling pH to inhibit 

NOB, or operating the system at high temperature to take advantage of differential kinetics.   

The SHARON partial nitrification process utilizes high temperature to create a partial 

nitrification system.  It has been studied by numerous researchers, and is the most extensively 

researched for coupling with the ANAMMOX system.  The single reactor high activity 

ammonium removal over nitrite (SHARON) system was first studied by Hellinga et al., and 

operates with no solids retention.  This creates a system in which SRT is equivalent to HRT.  
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HRT is selected to minimize growth of nitrite oxidizing bacteria.  Cyclic aeration was 

employed to limit oxygen, using a two hour cycle of 80 minutes aerobic, and 40 minutes 

anoxic conditions.  HRT for this system was 1.5 days, and the operational temperature is 30 

to 40° C.  The study reported that the SHARON system is most feasible for high ammonium 

concentrations, defined by the authors as “hundreds to thousands mg NH4
+
-N/L.

4
    

The reactor conditions of the SHARON system are quite extreme compared to the aeration 

basin of an activated sludge system.  If this system were employed in a large scale, 

maintaining a temperature of 35° C in colder climates may be an energy intensive endeavor.  

However, as noted by vanDongen et al., a possible application of the SHARON process is 

treating sludge digester effluent.  Anaerobic sludge digesters typically operate in the 

temperature range of 30 to 40° C.  However, if the SHARON process were to be used to treat 

domestic wastewater, the wastewater temperature would need to be raised.  The SHARON 

process developed by van Dongen et al. converted 53% of the influent ammonium  to nitrite, 

and when coupled with the ANAMMOX system, removed 80% of the total ammonium to 

dinitrogen (N2) gas; the system operated at a pH of 6.7-6.8, treating sludge digester effluent 

with ammonium concentration of 1-1.5 g/L NH4
+
-N.  van Dongen et al. note that the 

SHARON/ANAMMOX process minimizes the COD addition that is typically necessary in a 

nitrification/denitrification process treating high ammonium wastewaters because the 

nitrifiers and ANAMMOX organisms are autotrophic; however, the study claimed that the 

SHARON process is best designed for wastewaters containing greater than 500 mg/L 

NH4
+
-N.

5
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Khin et al. examined the optimal pH of the SHARON system, determining that the partial 

nitrification operated best at a pH between 7 and 8.  A pH higher than 8 increases the free 

ammonium (NH3) concentration, which can have inhibitory effects on nitrifiers.  The authors 

also compared the SHARON-ANAMMOX system to a conventional 

nitrification/denitrification system, and determined that “the combined system saves 50% on 

required oxygen and 100% on the external carbon source,” making it 90% less expensive 

than conventional treatment.
6
   

Mosquera-Corral et al. studied the inhibitory effects of salt on the nitrification process, 

suggesting the SHARON process for the treatment of fish canning industry wastewater from 

anaerobic digesters.  The study determined that at carbon-nitrogen ratios greater than 0.3, 

ammonium oxidizing efficiency decreased significantly, and at total organic carbon 

concentrations higher than 0.3 g/L, heterotrophic organisms outcompeted autotrophs.  The 

presence of salt (in the form of NaCl, KCl, or Na2SO4) also inhibited the nitrification 

process; 40% inhibition was observed at a 100 mM salt concentration.  Inhibition was similar 

for the different salts.  Optimal treatment in this system employed an HRT of 1.1 days, and a 

pH of 7.16, treating a wastewater with an influent ammonium concentration of 1000 mg/L 

NH4
+
-N.

7
   

Guo et al. employed aeration control in an SBR system to create a partial nitrification process 

operating at lower temperature (12 to 25° C).  Dissolved oxygen was controlled between 0 to 

4 mg/L O2, with an average value of 2.5 mg/L.  During startup, nitrite was found in the 

effluent, but the main product was nitrate.  After culture enrichment significantly more nitrite 

(23.4 mg/L NO2
-
-N) was produced, and nitrate was a minor product of the reaction (3.67 
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mg/L NO3
-
-N).

8
  The study did not control pH, and found a pH gradient which decreased (as 

seen in Figure 1 below).  The ammonium valley identified in Figure 1 was used as an 

operational control point to stop aeration.  The authors suggest that aeration duration control 

can be used to specify the ammonium/nitrite ratio in the SBR effluent.  

 

Figure 1.  Air-sparged partial nitrification reactor after 26 days of culture enrichment, Guo et 

al.  2009 
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CHAPTER 2: OXYGEN TRANSFER STUDY USING A HOLLOW FIBER 

MEMBRANE FOR BUBBLELESS AIR TRANSFER BY BOX-BEHNKEN DESIGN: 

DEVELOPMENT OF AN INNOVATIVE PARTIAL NITRIFICATION PROCESS  

Modified from a paper to be submitted to The Journal of Membrane Science 

Po-Heng Lee
1
,
 
Samuel W. Cotter

1
, Ling-Cian Huang

2
 and Shihwu Sung

1,* 

Department of Civil, Construction, and Environmental Engineering, Iowa State University, 

394 Town Engineering Building, Ames, IA 50011, USA
1 

Department of Environmental Engineering, National Ilan University,  

No.1, Sec. 1, Shennong Rd., Yilan City, Yilan County 26047, Taiwan (R.O.C.)
2 

 

Correspondence: sung@iastate.edu, +1 515 294 3896 (phone), +1 515 294 8216 (fax) 

 

Abstract 

This research paper assesses oxygen transfer efficiency of a silicone hollow fiber membrane 

in an aqueous environment for wastewater treatment research.  The KLa oxygen transfer 

coefficient was determined through lab testing.  Box-Behnken statistical analysis was 

employed to assess the influence of three test variables: supply air pressure, mixing power, 

and membrane surface area.  These variables were normalized for the reactor volume.  

Statistical analysis determined that membrane surface area and air supply pressure had a 

more significant effect on the KLa value than the mixing power variable.  A mathematical 

model was developed to represent the oxygen transfer coefficient  (KLa) as a function of the 

three test variables and their interactions.   

Key words: Hollow fiber membrane; Oxygen transfer; Optimal experimental design; 

Box-Behnken design; Partial Nitrification  
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Introduction 

As a result of human activity, particularly agriculture and sewage effluent, excess nitrogen 

(N) is accumulating in the environment.
1
  Wastewater treatment plants release effluent into 

the environment without advanced treatment.  Excess nitrogen in water bodies, can result in 

eutrophication.  This causes a variety of problems such as the depletion of dissolved oxygen, 

toxicity toward the aquatic life, and a potential increase in public hygienic issues.
2, 3

  The 

symptoms of eutrophication are observed in 78 percent of coastal area, 50 percent of lake 

area, and 60 percent of rivers in the United States.
4, 3

  Consequently, more stringent nutrient 

limitations will be expected in the near future.  In addition, water and wastewater facilities 

consume 3% of the electricity usage in the U.S., equivalent to approximately 56 billion 

kilowatt hours (http://www.epa.gov/waterinfrastructure/bettermanagement_energy.html).   

Installing biological nutrient removal to upgrade existing wastewater facilities to meet 

stringent nutrient limitations would require more than double the current electricity 

consumption.  

ANAMMOX (anaerobic ammonium oxidization) is a newly discovered nitrogen removal 

process, in which ammonium is oxidized directly into nitrogen gas using nitrite as an electron 

acceptor.
5, 6

  The stoichiometric ratio of the ANAMMOX reaction between reactants, 

ammonium and nitrite, and nitrate, is 1:1.31:0.22.
6
  Most of the ammonium is converted into 

nitrogen gas, bypassing the formation of nitrate.  Therefore, the process can provide a 

substantial reduction in energy use (saving up to 62.5% of air supply) and require no external 

carbon source.  The slow growing characteristic of ANAMMOX bacteria adds another 

benefit in low sludge production, which reduces the sludge treatment and disposal need.  The 
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ANAMMOX process provides a substantial reduction in energy use and requires no organic 

carbon source, because the bacteria responsible for the reaction are autotrophs.  The 

ANAMMOX process requires the stoichiometric ratio of ammonium to nitrite approximately 

equal to 1.  Therefore, a sustainable nitrite supply for the ANAMMOX application is a vital 

requirement.  Many researchers have previously utilized pH and/or temperature as the control 

parameters to inhibit the nitrite oxidizers and to enrich the ammonium oxidizers for 

maintaining nitrite production, such as the SHARON process.
7, 8

  However, the SHARON 

process requires influent waste with mesophilic temperatures or relatively low pH values.  

Consequently, the ANAMMOX application is limited to only treating reject waters with a 

high ammonium concentration such as industrial reject waters, anaerobic digester 

supernatant, or landfill leachate.  Also, the SHARON process isn’t designed to operate at a 

low dissolved oxygen (DO) condition for saving energy consumption from supplying 

oxygen.  Thus, there is a need to develop a new energy sustainable, reliable, partial 

nitrification system for applications of a wider range of ammonium contain wastewaters. 

To transfer oxygen efficiently in the bulk solutions, using a gas permeable hollow fiber 

membrane (HFM) as an oxygen delivery diffuser has been evaluated in water and wastewater 

treatment processes.
9, 10, 11

  However, it has not yet been applied in the partial nitrification 

process. Therefore, this study develops an innovative HFM partial nitrification biofilm 

process: employing a hollow fiber bubbleless membrane aeration reactor to limit dissolved 

oxygen and culture specific bacteria.  Figure 2 shows the cross-section profile of the HFM 

partial nitrification system.
12

  Oxygen is diffused from the inside of the HFM into the bulk 

solution, through a nitrifying biofilm.  This biofilm consumes much of the oxygen before it 
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reaches the bulk solution.  The process is implemented with a low DO operating strategy as a 

selection pressure to enrich ammonium oxidizing bacteria (AOB) on the membrane surface 

and to eliminate nitrite oxidizing bacteria (NOB), because the affinity values are within the 

range of 1-15 and 22-166 μM O2 for AOB and NOB, respectively.
13

  The objective of this 

study was to examine oxygen mass transfer from a silicone hollow fiber membrane for partial 

nitrification.   The Box-Behnken method, a statistical experimental design method, was used 

to investigate the parameters of supplied air pressure (P/V), membrane surface area per 

volume (AM/V) and power input per working volume for mixing (ω/V). 

 

Figure 2. Schematic of silicone membrane oxygen transfer theory, adopted from Feng et al.  

2007 
12
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Materials and methods  

Membrane module 

The membrane used for oxygen mass transfer in this study was the Gilbrane silicone hollow 

fiber membrane (silicone-rubber type) by Fuji Systems Corporation (Tokyo, Japan). The 

outer diameter and wall thickness of the nonporous silicone membrane was 2.0 mm and 250 

µm, respectively.  The length of the tested membrane was varied from 6 meters to 18 meters.  

The membrane was coiled around a supporting rack, and submerged in a 3-Liter acrylic 

plastic reactor.  A BioFlo 2000 Fermentor was used as a variable-speed mixer.  Nitrogen gas 

was used to purge oxygen from the reactor.  Dissolved oxygen was measured using the 

Mettler Toledo O2 4100e oxygen probe.  A schematic of oxygen transfer experimental setup 

is shown in Figure 3.  
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Figure 3. Schematic diagram of experimental setup  

The reactor diameter was 12.70 cm, and the impeller diameter was 7.62 cm.  The water 

height in the reactor was 25.00 cm.  The reactor construction was acrylic clear plastic, and 

the volume of the reactor was 3 liters.  This height to depth ratio matches an axial-flow 

2-blade 45° impeller was chosen for this study because axial flow impellers have lower shear 

rates on cells than Rushton impellers.
14

  This characteristic is necessary for supporting a 

viable biomass.   

In the experiment, the membrane reactor was filled with distilled water at 20° C.  The reactor 

temperature was consistently 18° - 22°C.  The pH value of the water was constant throughout 

the experiment.  The ungassed power input (ω) was not directly measured. Instead, the 
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reactor was mixed between 300 rpm to 500 rpm, and the ungassed power input per unit 

volume (ω/V) was calculated, resulting in values ranging from 189 to 874 W/m
3
.  It can be 

calculated by the following relationship:
15

  

  (1) 

Where Po is the power number for an axial-flow 2-blade 45° impeller (determined to be Po= 

1.8 in this study)
16

, ρ is the water density (kg/ m
3
), D is the impeller diameter (m), T is the 

reactor diameter (m), n is the mixing speed (rps), and H is the height of the water in the 

reactor (m). 

Membrane surface area was another variable tested.  Silicone membrane lengths of 6, 12, and 

18 meters were installed in the reactor.  The surface area of the membranes was normalized 

based on reactor volume, producing the variable of membrane area per unit volume (AM/V), 

with units of m
2
/m

3
, or 1/m.  Values for AM/V ranged from 12.6 m

2
/m

3 
for the 6-meter long 

membrane, to 37.7 m
2
/m

3 
for the 18-meter long membrane. 

Compressed air was transferred across the membrane into the bulk solution/water in the 

membrane reactor at a supply pressure ranging from 137.9 to 206.8 kPa (20 to 30 psi). This 

parameter is normalized for the reactor volume, resulting in a pressure per volume variable 

(P/V) ranging from 45965 to 68947 kPa/ m
3
.  The exhaust is vented from the top of the 

membrane reactor.  The DO gradient was monitored with time by the DO probe connected to 

a computer for on-line recording. The experiment was operated at 22
o 
C.  The oxygen 

transfer coefficient (KLa) was related to dissolved oxygen concentration using the following 

relationship:   
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                  (2) 

where C
* 
= aqueous phase DO concentration in equilibrium with the gas phase (mg/L), 8.55 

mg/L in this study, C = measured dissolved DO concentration (mg/L), kLa = oxygen mass 

transfer coefficient (1/hr) in the hollow fiber membrane reactor, and t = time (hour). 

The manufacturer of the hollow fiber membrane (Fuji Systems Corporation, Tokyo Japan) 

provided the following equation to determine flow rate across the silicone membrane: 

  (3) 

The solution is provided in mL gas per second.  K is a constant dependent on the gas 

supplied (K=50 for O2 gas, K=25 for N2 gas, from manufacturer), L is the thickness of the 

silicone membrane, A is the available membrane area (cm
2
), and (P-P’) is the difference in 

partial pressure (cmHg).  This equation was not used for the statistical model because the gas 

flowrate model cannot separate membrane area and gas pressure independently for analysis.   

Experimental design 

Box-Behnken design employs a response surface design will be implemented to 

systematically survey three variables (air pressure per volume, membrane surface area per 

volume, and mixing power input per volume) at three levels.  The variable levels have been 

chosen under the conditions of the practical ranges.  Table 1 shows the variables and their 

respective levels for this oxygen transfer study.  The list of the experiments based on Table 1 

is shown in Table 2.  The experimental combination of variables was selected at random by 

the JMP statistical software.  Experimental trials 2, 3, and 12 (Table 2) are the central 
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variable points; these trials have been repeated three times for calculating errors (mean and 

standard deviation) based on the Box-Behnken design.   

Table 1. Variables and their respective levels for this membrane study 

Variables Levels 

-1 0 +1 

Supplied air pressure (P/V, kPa/m
3
)  45965 57456 68947 

Membrane surface area per volume (AM/V, m
2
/m

3
)  12.6 25.2 37.7 

Power input per volume for mixing (ω/V, W/m
3
) 189 532 874 
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Table 2.  List of experiments and response oxygen mass transfer determination 

System 

Run 

Pattern   Parameters   Response 

AM/V 

(m
2
/m

3
) 

(ω/V) 

(W/s) 

P/V 

(kPa/m
3
) 

KLa 

(1/hour) 

1 + − 0 37.7 189 57456 2.0420 

2 0 − + 25.15 189 68947 1.0845 

3 − − 0 12.6 189 57456 0.8946 

4 − 0 + 12.6 532 68947 1.1898 

5 − + 0 12.6 874 57456 1.2482 

6 0 0 0* 25.15 532 57456 1.1852 

7 0 + + 25.15 874 68947 1.7436 

8 0 + − 25.15 874 45965 0.9372 

9 − 0 − 12.6 532 45965 0.7088 

10 0 0 0* 25.15 532 57456 0.9015 

11 + + 0 37.7 874 57456 2.3230 

12 0 − − 25.15 189 45965 0.7056 

13 + 0 − 37.7 532 45965 1.6257 

14 0 0 0* 25.15 532 57456 1.4467 

15 + 0 + 37.7 532 68947 2.5859 

  Statistical Errors Mean* 1.1778 

  STD* 0.2727 

*Mean and Standard Deviation calculated for data points 6, 10, and 14.  

AM/V:  Area of membrane per Volume (m
2
 / m

3
) 

(ω/V):  Power input per unit volume (W / m
3
) 

P/V:  Air pressure per Volume (kPa / m
3
) 

KLa:  Oxygen transfer coefficient (1/hr) 

 

The Box-Behnken design among the response surface designs allows the estimation of an 

empirical second-order model shown below:  



18 
 

 

(4) 

Where xi are the variables, y is the response, b0 is the constant term (intercept parameter),  b1, 

b2, and b3 are single factor effects, b11, b22, and  b33 are quadratic terms, and b12, b13, and b23 

are interaction effect terms.  

The Box-Behnken design experimentations, statistical data analysis, and graphics in this 

study were conducted using the statistical software package JMP
TM

 version 8.0.1 (©SAS 

Institute Inc., Cary NC).   

Results and Discussions  

Using the statistical model and experimental design listed above, the following full 

prediction model for KLa was determined by the equation (1), in the form of equation (4) 

above: 

KLa = 1.1778 +.5669∙AM/V +.1906625∙(ω/V) + 0.3283125∙P/V − .01815∙(AM/V) ∙(ω/V) + 

0.1198∙(AM/V)∙(P/V) + .106875∙(ω/V)∙(P/V) + .4294875(AM/V)
2
 + .0196625∙(ω/V)

2
 − 

0.08125∙( P/V)
2
 (5) 

Where 

AM/V:  Area of membrane per Volume (m
2
 / m

3
) 

(ω/V):  Power input per unit volume (W / m
3
) 

P/V:  Air pressure per Volume (kPa / m
3
) 

KLa:  Oxygen transfer coefficient (1/hr) 
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The model in equation (5) includes all nine possible variable combinations in a 2
nd

 degree 

prediction model.  The fit of this model to the experimental data can be estimated using the R 

square value.  The model listed in equation (5) has an R square value of 0.9648, indicating 

high statistical accuracy (see Table 3).   

Table 3.  Full model summary of fit 

RSquare 0.964829 

RSquare Adj 0.90152 

Root Mean Square Error 0.182274 

Mean of Response 1.37482 

Observations (or Sum Wgts) 15 

 

The model can be verified statistically through analysis of variance.  By accounting for the 

total degrees of freedom of the model (7) and the degrees of freedom of the experimental 

design (14), a minimum F-ratio of 6.58 is established for 99.9% confidence.  The calculated 

F-ratio of the model is 15.2401, greater than the minimum of 6.58; this indicates that the 

statistical significance of the model exceeds 99.9% confidence (see Table 4).   

Table 4. Full model analysis of variance 

Source DF Sum of Squares Mean Square F Ratio 

Model 9 4.5569760 0.506331 15.2401 

Error 5 0.1661182 0.033224 Prob > F 

C. Total 14 4.7230943  0.0040* 
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Variables (AM/V), (AM/V)
2
 and (P/V) were most significant, with statistical probabilities less 

than 0.01.  Statistical significance is identified as lower than 0.05 (95% confidence).   

To increase the accuracy of the prediction model, low-significance variables can be removed 

to simplify the equation (see Table 5).   

Table 5. Full model parameter estimates 

Term t Ratio Prob>|t| 

Intercept 11.19 <.0001* 

AreaPerVolume 8.80 0.0003* 

PowerPerVolume 2.96 0.0316* 

PressurePerVolume 5.09 0.0038* 

AreaPerVolume*PowerPerVolume -0.20 0.8500 

AreaPerVolume*PressurePerVolume 1.31 0.2457 

PowerPerVolume*PressurePerVolume 1.17 0.2937 

AreaPerVolume*AreaPerVolume 4.53 0.0062* 

PowerPerVolume*PowerPerVolume 0.21 0.8440 

PressurePerVolume*PressurePerVolume -0.84 0.4389 

 

Variables (AM/V)∙(ω/V) and (ω/V)
2
 had probability ratios of 0.84 and 0.844, respectively.  

These probability values are significantly more than the 0.05 limit for a confident model.  

These variables were removed to create a simplified model, shown in equation (6) below.   

KLa = 1.1899 +.5669∙AM/V +.1906625∙(ω/V) + 0.3283125∙P/V + 0.1198∙(AM/V)∙(P/V) + 

.106875∙(ω/V)∙(P/V) + .4294875(AM/V)
2
 − 0.08125∙( P/V)

2
 (6) 
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The model listed in equation (6) has an R square value of 0.9642, indicating high statistical 

accuracy.  Utilizing analysis of variance, the model is analyzed by accounting for the total 

degrees of freedom of the model (7) and the degrees of freedom of the experimental design 

(14), a minimum F-ratio of 7.08 is established for 99.9% confidence.  The calculated F-ratio 

of the model is 26.9699, greater than the minimum of 7.08; this indicates that the statistical 

significance of the model exceeds 99.9% confidence.  The calculated F-ratio of the simplified 

model of equation (6) is higher than the full model shown in equation 4, indicating improved 

statistical accuracy of the model fit.  Variables (AM/V), (AM/V)
2
 and (P/V) continued to be 

most significant in the model, with probability values of 0.0001, 0.0011, and 0.0006, 

respectively.   

The statistical accuracy of the model can be analyzed by evaluating the actual vs. predicted 

plots for the full and simplified models.  Figure 4 shows the actual vs. predicted plot for the 

full model.  The collected data points are plotted against the line drawn by the mathematical 

model.  It shows that many of the collected data points are very close to the mathematical 

model.  
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Figure 4. Full model actual by predicted plot 

Likewise, the simplified model can be evaluated for fit by examining the actual by predicted 

plot (Figure 5).  The experimental data are plotted against the model, and fit the 

mathematical model more accurately than the full model, indicating that removing variables 

improved model accuracy. 
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Figure 5. Simplified model actual by predicted plot  

The significance of each variable can be evaluated through the use of a contour plot.  The 

two-dimensional contour plot compares two variables and displays how the response variable 

(KLa) changes as the variables are modified.  PressurePerVolume is compared to 

AreaPerVolume in Figures Figure 6, Figure 7, and Figure 8.  These contour plots indicate 

that AreaPerVolume has a more significant impact on KLa value; for a given 

PressurePerVolume, the KLa changes more significantly with a change in AreaPerVolume.   
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Figure 6.  Contour plot for KLa for interaction of PressurePerVolume and AreaPerVolume 

with PowerPerVolume=189 W/m
3
 

 

Figure 7.  Contour plot for KLa for interaction of PressurePerVolume and AreaPerVolume 

with PowerPerVolume=531.5 W/m
3
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Figure 8.  Contour plot for KLa for interaction of PressurePerVolume and AreaPerVolume 

with PowerPerVolume=874 W/m
3
 

PowerPerVolume and AreaPerVolume are compared in Figures Figure 9, Figure 10, and 

Figure 11.  These contour plots also display the significance of AreaPerVolume, which is 

more significant than PowerPerVolume.  At a given power value, the KLa changes 

significantly as AreaPerVolume increases.   
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Figure 9. Contour plot for KLa for interaction of PowerPerVolume and AreaPerVolume with 

PressurePerVolume=45965 kPa/ m
3
 

 

Figure 10. Contour plot for KLa for interaction of PowerPerVolume and AreaPerVolume 

with PressurePerVolume=57456 kPa/ m
3
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Figure 11. Contour plot for KLa for interaction of PowerPerVolume and AreaPerVolume 

with PressurePerVolume=68947 kPa/ m
3 

In Figures Figure 12, Figure 13, and Figure 14, PressurePerVolume is compared to 

PowerPerVolume, and indicates that PressurePerVolume is more significant than the 

PowerPerVolume variable.  At a given power value, the KLa changes dramatically as 

PressurePerVolume is increased.  From these contour plots, it is observed that 

PowerPerVolume is less significant than the variables of PressurePerVolume and 

AreaPerVolume.  This conclusion is also supported by the mathematical model: the 

coefficients for AreaPerVolume and PressurePerVolume are greater than the coefficient for 

PowerPerVolume.   
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Figure 12. Contour plot for KLa for interaction of PressurePerVolume and PowerPerVolume 

with AreaPerVolume=12.6 m
2
/m

3

 

Figure 13. Contour plot for KLa for interaction of PressurePerVolume and PowerPerVolume 

with AreaPerVolume=25.15 m
2
/m

3
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Figure 14. Contour plot for KLa for interaction of PressurePerVolume and PowerPerVolume 

with AreaPerVolume=37.7 m
2
/m

3
 

These three variables and their interactions are also displayed graphically in Figure 15, the 

interaction profile plot for the simplified model.  This plot shows how the KLa value is 

affected by each variable.  The AreaPerVolume and PressurePerVolume plots display a 

second-degree trend, while the PowerPerVolume plots are more linear.  This is reflected in 

the mathematical model (equation 6), as both variables (AM/V)
2
  and ( P/V)

2
 are included in 

the model.  The lower statistical significance of the PowerPerVolume variable is also shown 

in the AreaPerVolume and PressurePerVolume plots which display the trends at the extremes 

of the PowerPerVolume variable (189 to 874).  The increase in PowerPerVolume between 

these two curves does not have a significant effect on the KLa value determined from the 

plot.   
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Figure 15. Simplified model variable interaction profile 

Finally, the KLa data can be summarized by surface contour plots.  These plots compare two 

variables and the resulting KLa value in a three-dimensional surface.  Therefore, the full 

range of the two compared variables can be displayed on a single plot.  PressurePerVolume is 

compared to AreaPerVolume in Figure 16, PowerPerVolume is compared to AreaPerVolume 

in Figure 17, and PressurePerVolume is compared to PowerPerVolume in Figure 18.  The 

most notable surface plot among these three figures is Figure 16, which again indicates the 

significance AreaPerVolume has, and the relative insignificance of the PowerPerVolume 

variable; at a given PowerPerVolume value, AreaPerVolume changes much more drastically 

than PowerPerVolume changes at a given AreaPerVolume value.   
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Figure 16.  Response surface simplified model PowerPerVolume: 531.5 W/m
3
, 

AreaPerVolume: 25.15 m
2
/m

3
, PressurePerVolume: 57456 kPa/ m

3
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Figure 17. Response surface simplified model PowerPerVolume: 531.5 W/m
3
, 

AreaPerVolume: 25.15 m
2
/m

3
, PressurePerVolume: 57456 kPa/ m

3
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Figure 18. Response surface simplified model PowerPerVolume: 531.5 W/m
3
, 

AreaPerVolume: 25.15 m
2
/m

3
, PressurePerVolume: 57456 kPa/ m

3
 

 

Conclusions 

Oxygen transfer was quantified by determining the KLa value at varying reactor conditions.  

The gas mass transfer study successfully compared the influence of three variables 

(AreaPerVolume, PowerPerVolume, and PressurePerVolume) on the gas mass transfer 

response (KLa); a mathematical model representing these relationships represents their 

interaction.  It was found that the variables AreaPerVolume and PressurePerVolume have a 

more significant effect on KLa determination than the mixing PowerPerVolume variable.   
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For partial nitrification, the oxygen transfer must be limited.  The oxygen transfer results 

from this study indicate a KLa value ranging 0.71 to 2.59 h
-1

, depending on reactor 

conditions.  For fine bubble diffusers used in activated sludge treatment, KLa is reported to be 

16.2 h
-1

.
17

  This lower oxygen transfer coefficient will assist in the oxygen limiting selection 

pressure to enrich ammonium oxidizing bacteria.   
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Abstract 

A hollow fiber membrane reactor was employed to create a partial nitrification reactor as a 

pre-treatment system for ANAMMOX nutrient removal.  Using a silicone membrane to limit 

oxygen transfer, a biofilm treatment system was created, with biomass attaching on the 

membrane surface.  The system operated at room temperature with a very low dissolved 

oxygen concentration (< 0.1 mg/L).  Nitrite production was evident, with little nitrate 

produced in the system.  The system treated high ammonium concentration (250 mg/L 

NH4
+
-N) and low ammonium concentration (50 mg/L NH4

+
-N).  Ammonium oxidizing 

bacteria dominated the microbial community, while nitrite oxidizing bacteria were 

suppressed and growth was limited.  Real-time polymerase chain reaction (qPCR) was 

employed to verify the dominance of AOB in the system.  This verified that a low 

dissolved-oxygen condition selects for AOB, and the silicone membrane is an effective 

method of controlling oxygen transfer.   
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1.  Introduction 

Excess nutrients, particularly nitrogen, are discharged from wastewater streams directly 

into receiving water bodies without advanced treatment.  These nutrients are causing 

eutrophication downstream, resulting in algal blooms and hypoxic conditions.  This pollution 

changes aquatic communities and harms the natural ecosystem.
1
  The symptoms of 

eutrophication are observed in 78 percent of coastal area, 50 percent of lakes, and 60 percent 

of rivers in the United States.
2,3

  Consequently, more stringent regulation requiring greater 

nutrient removal is likely in the near future.  

To mitigate environmental problems caused by nutrient discharge into waterways, 

regulators are looking to increase restrictions on point sources for nutrients.  The USEPA is 

urging nationwide adoption of new numeric nitrogen and phosphorus discharge criteria.  

Upgrading existing facilities into biological nutrient removal system consisting of, at a 

minimum, anaerobic, anoxic, and aerobic tanks would increase treatment plant energy 

demands.  Three percent of electricity consumption in the U.S. is from water and wastewater 

faculties (approximately 56 billion kWh).
4
  Aeration of activated sludge secondary treatment 

typically accounts for 30 to 60 percent of total plant energy consumption.  There is a need for 

developing a new sustainable, highly efficient treatment system. 

Coupling a partial nitrification system with the Anaerobic Ammonium Oxidation 

(ANAMMOX) process would decrease energy consumption related to oxygen supply.  By 

controlling oxygen delivery to the aerobic chamber and eliminating nitrite oxidizing bacteria, 
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the oxygen demands of a partial nitrification system are lower than an activated sludge 

system for nitrogen removal.  This environmentally sustainable and cost effective system will 

be the most competitive solution to meet new nutrient discharge standards.   

The anaerobic ammonium oxidation (ANAMMOX) process is an innovative process that 

oxidizes ammonium and nitrite directly to N2 gas.  The partial nitrification step can be 

combined with the ANAMMOX process to provide the necessary nitrite substrate.  Together, 

ANAMMOX and partial nitrification are combined to create a more efficient nutrient 

removal system. 

The stoichiometric ratio of the ANAMMOX reaction between ammonium, nitrite, and 

nitrate, is 1:1.31:0.22.
5
  Most of the ammonium is converted into nitrogen gas, bypassing the 

formation of nitrate.   

Partial nitrification has previously been achieved using a silicone membrane.  Feng et al. 

addressed optimal alkalinity in a partial nitrification reactor.  However, oxygen transfer and 

species microbiology were not thoroughly addressed in the study by Feng et al. The study 

addressed the alkalinity requirements of nitrifying organisms.  The optimal alkalinity was 

determined to be 1500 mg/L CaCO3 for 50% partial nitrification.
6
  Additionally, previous 

studies have limited dissolved oxygen concentration to 0.5 mg/L.
6
  Research on the process 

described in this article achieved consistent dissolved oxygen of 0.05 mg/L or less in the bulk 

solution, indicating lower maintained dissolved oxygen than described in the Feng et al. 

study.   

 

2.  System Operation 

2.1 Stoichiometry 
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Nitrification is the process by which ammonium (NH4
+
-N) is oxidized first to nitrite 

(NO2
-
-N) by ammonium oxidizing bacteria (AOB), and then to nitrate (NO3

-
-N) by nitrite 

oxidizing bacteria (NOB).  The conventional oxidation process is completed by the following 

stoichiometric reactions: 

Ammonium Oxidation:  2NH4
+
 + 3O2 → 2NO2

-
 + 2H2O + 4H

+
  

Nitrite Oxidation:  2NO2
-
 + O2 → 2NO3

-
  

Complete Ammonium Oxidation to Nitrate:  NH4
+
 + 2O2 → NO3

-
 + H2O + 2H

+
  

However, the pairing of the partial nitrification system and the ANAMMOX system yields 

a process which ultimately produces nitrogen gas and water, as described by the following 

reaction:   

Anaerobic Ammonium Oxidation to Nitrogen gas:   

NH4
+
 + 1.31NO2

- 
+ 0.0425CO → 1.045N2 + 0.22NO3

- 
+ 1.87H2O  +.09OH

-
 + .0425CH2O 

 

2.2 Selection Pressure 

Isolating specific microorganisms improves operational efficiency.  Unlike a mixed-culture 

system which requires excess aeration and retention time, an organism-specific system can 

be optimized to meet the needs of the target organism.  The reactor operation was controlled 

in a manner that encouraged the dominance of ammonium oxidizing bacteria (AOB); nitrite 

oxidizing bacteria (NOB) were suppressed.  This allowed for the accumulation of nitrite 

(NO2
-
) in the reactor because nitrite was not being oxidized by NOB to nitrate.   

Previously, the SHARON process has been effectively employed to partially nitrify 

ammonium to nitrite, as a pre-treatment for the ANAMMOX process.  This process operates 
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above 25°C, often operating between 30-40°C.  SHARON treats wastewaters with high 

ammonium concentrations (above 500 g NH4
+
-N / L).

7
    

The selection pressure for AOB was the low dissolved oxygen condition.  The partial 

nitrification system was operated at anoxic conditions, with a dissolved oxygen concentration 

below 2.0 mg/L.  This low DO condition encourages AOB growth because AOB have a 

higher affinity for oxygen.
8
  The oxygen saturation coefficient values are within the range of 

1-15 μM O2 for AOB and and 22-166 μM O2 for NOB.
9
  The values for oxygen saturation 

coefficient in research performed by Ciudad et al. differs slightly: 30.94 μM O2 for AOB and 

43.75 μM O2 for NOB (0.99 and 1.4 g O2/m3, respectively, as reported by the authors).
10

   

Denitrification, the conversion of NO3
-
 to nitrogen gas, operates best at low dissolved 

oxygen concentrations.  Heterotrophic denitrification requires organic material to serve as an 

electron donor.
8
  To discourage the growth heterotrophic organisms, the synthetic wastewater 

used in this study included very little organic carbon (see  

Table 6).  Ammonium oxidizing bacteria are autotrophic organisms (genus Nitrosomonas), 

and therefore utilize an inorganic carbon source.   

2.3  Hollow fiber membrane selection 

A silicone membrane was selected for oxygen delivery based on its physical 

characteristics.  Air diffuses through the silicone membrane and forms small bubbles on the 

silicone surface.  The silicone membrane provides an aeration surface for oxygen transfer, 

without bubble release from the membrane, unlike a typical air-sparging aerator.  A 

bubbleless reactor is thus created, and biomass is not blown away from the membrane by the 

air bubbles.  This mechanism allows biomass to attach to the silicone membrane and 

consume the available oxygen before the oxygen reaches the bulk solution.  Therefore, bulk 
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dissolved oxygen remains low (less than 0.1 mg/L), while oxygen-consuming organisms 

grow on the silicone membrane.   

Additionally, attached growth is ideal for nitrifying autotrophs.  Membrane aeration 

systems provide available surface area for biofilm attachment; a biofilm system takes 

advantage of long sludge age to aid in culturing nitrifying organisms.
11

  Due to the 

slow-growing nature of nitrifying organisms, a biofilm or granule structure allows for an 

increase in biomass concentration and solids retention time (SRT).
8,12

  Nitrifier biofilms also 

attach more securely than heterotrophic biomass.
11

  

Experimentally, the biomass yield of fixed-film nitrification processes ranges from 0.044 

to 0.097 g SS/ g NH4
+
-N.

11
  Heterotrophic organisms for decomposition of organic 

compounds have a yield of 0.40 mg VSS/ mg OD.
13

  The lower yield of nitrifier organisms 

indicates that heterotrophs must be eliminated for autotrophic nitrifiers to dominate and 

perform partial nitrification.   

2.4  Microbial community analysis 

Based on the observed results from experimental tests, the presence of high nitrite 

concentrations indicates the dominance of ammonium oxidizing bacteria.  It is also assumed 

that little nitrite oxidation occurs.  The experimental data support the assumption of an 

effective selection pressure favoring ammonium oxidizing bacteria.  The theoretical selection 

pressure of oxygen affinity also supports the claim of ammonium oxidizing bacteria 

dominance, as explained earlier.   

To verify these assumptions, a microbiological assessment, real-time PCR (polymerase 

chain reaction), was conducted on biomass samples collected from the partial nitrification 

reactor. Analysis has also been performed in previous research using standard PCR, 
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fluorescence in-situ hybridization (FISH) analysis, and terminal restriction fragment length 

polymorphism (T-RFLP).
14

  Real-time PCR was selected based on accuracy of the test and 

efficiency of the lab procedures.   

Previous studies have used PCR to identify ammonium oxidizing organisms.  There are 

two approaches outlined in previous studies.  One approach is to identify DNA sequences in 

the 16S rRNA which are specific for nitrifier genera; the other approach is to identify genetic 

material representing the genes that oxidize ammonium or nitrite. Both DNA target 

approaches were used in this research.  The gene representing ammonium oxidation is the 

ammonium monooxogenase gene (amoA), which is found in both bacteria and archaea.  The 

gene representing nitrite oxidation is the nitrite oxioreductase gene (nxrA). In the natural 

environment, AOB only account for 0.1% of the total bacterial community.  Additionally, 

non-extremophilic archaea have been detected.
15

  AmoA is the enzyme responsible for 

catalyzing the rate-limiting step in bacterial ammonium oxidation.  It is therefore a reliable 

molecular marker for studying the AOB community.   

The DNA amplicon size amplified by PCR in the 16S rRNA studies for Nitrosomonas 

europea and Nitrobacter genus was too long to use in the real-time qPCR analysis performed 

in this research.  Therefore, the nitrifier-specific gene selection method was chosen for 

community analysis.  The nxrA gene has not been sequenced in the Nitrospira genus of 

NOB; therefore, the 16S rRNA sequence was used to identify this organism.   

Mintie et al. (2003) performed a study employing PCR and T-RFLP analysis to examine 

ammonium oxidizing bacteria in soil.  The PCR thermal cycling program utilized was 

adopted from this Mintie et al. study.   

3.  Materials and Methods 
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3.1  Partial nitrification reactor configuration 

The reactor configuration for the partial nitrification study employed a long glass tube 

reactor with a recirculation reservoir for sampling and monitoring pH and dissolved oxygen.  

The reactor is 122 cm long, 2.5 cm outer diameter, and 2.29 cm inner diameter, for a reactor 

volume of 500.4 mL.  The reservoir provides 716 mL of additional volume.  The reactor 

incorporates a single silicone membrane fiber.  The silicone membrane is the length of the 

reactor (122 cm), and has an outer diameter of 2.0 mm, and a wall thickness of 0.25 mm.   A 

recirculation pump cycled the wastewater to be treated through the membrane reactor and 

into the reservoir.  This reactor configuration is seen in Figure 19 below.   

Compressed air was applied to the silicone membrane at 137.9 kPa (20 psi).  The 

manufacturer of the silicone membrane (Fuji Systems Corporation, Tokyo Japan) provided 

the following equation to determine flow rate across the silicone membrane: 

 

The gas flowrate is calculated in mL gas per second.  K is a unitless constant dependent on 

the gas supplied (K=50 for O2 gas, K=25 for N2 gas), L is the thickness of the silicone 

membrane (cm), A is the available membrane area (cm
2
), and (P-P’) is the difference in 

partial pressure (cmHg).  Based on the supply pressure of 137.9 kPa (20 psi) and a membrane 

length of 122 cm, the oxygen flow rate was determined to be 9.458x10
-14

 mL/sec, or 

5.675x10
-12

 ml/min. 

The calculated flowrate is quite low.  The low flowrate of the gas permeation through the 

silicone membrane creates an environment which is ideal for maintaining a low dissolved 

oxygen in the bulk solution.  As gas is diffused, small bubbles form on the surface of the 
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membrane.  This creates a system which can be classified as “bubbleless.”  Few previous 

partial nitrification studies have been performed using a bubbleless system.  Previously, 

researchers have controlled the gas flowrate.  In this research, the system was operated at a 

constant pressure, allowing for consistent operation of the system, and eliminating the need 

for aeration control.   

 

 

Figure 19.  Partial nitrification reactor configuration 

3.2 Water quality analysis and data collection 

Dissolved oxygen was measured using the Mettler Toledo O2 4100e probe and the Mettler 

Toledo O2 4100 meter.  The pH was measured using the Mettler Toledo 

405-DPAS-8C-K8S/328 pH probe and the Mettler Toledo pH 2100 meter.  pH and dissolved 

oxygen values were recorded on a twenty second interval using a National Instruments 

computer interface, and National Instruments LabView software.  Ammonium data were 

collected using an Orion 95-12 ammonia selective probe according to procedure 4500 – NH3 
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D. Ammonia-Selective Electrode Method of the Standard Methods for the Examination of 

Water and Wastewater.
16

   Nitrite and nitrate were tested using a Hach DR3000 

spectrophotometer using the NitriVer2 (ferrous sulfate method) and NitraVer5 (cadmium 

reduction method) reagents for 10 mL samples according to the DR/3000 testing procedures 

provided by the Hach Company.    

 

3.3 Reactor startup and cycling 

The reactor was inoculated with concentrated activated sludge from the Boone wastewater 

treatment plant in Boone, Iowa.  The reactor was operated at room temperature, varying from 

18 - 22° C.   

High-strength synthetic wastewater was fed into the reactor to encourage nitrifier growth.  

Because the synthetic wastewater contained little organic carbon and high ammonium, the 

synthetic wastewater encouraged nitrifier growth, and discouraged denitrifier growth.  The 

alkalinity in the synthetic wastewater was adjusted to account for alkalinity consumption by 

the ammonium oxidation process; AOB nitrifiers consume 7.41 g of alkalinity per gram of 

NH4
+
-N.  Yeast extract was added as a micro-nutrients supplement and to determine if 

autotrophs could dominate the culture, despite a low level of COD available for heterotrophic 

growth.  The diluent for the synthetic wastewater was tap water from the City of Ames, Iowa.  

The synthetic wastewater is summarized in  

Table 6 below.   

Table 6.  Synthetic wastewater composition 

NH4HCO3 0.249 - 1.410 g/L 

KHCO3 0.156 - 0.410 g/L 
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NaHCO3 0.100 - 0.360 g/L 

KH2PO4 0.050 - 0.150 g/L 

Yeast Extract 0.015 - 0.040 g/L 

Na2HPO4 0.030 - 0.090 g/L 

MgSO4 0.040 - 0.100 g/L 

 

The reactor was operated as a batch process.  The reactor liquid media was replaced by 

draining the recirculation reservoir and refilling with synthetic wastewater.  Hydraulic 

retention time was varied based on experimental data collected for ammonium, nitrite, and 

nitrate.  However, during the inoculation phase the HRT was approximately 40 hours.  

During low-ammonium testing, the HRT was decreased to 24 hours.  Solids retention time 

(SRT) is approximated as infinite because sludge was not removed from the system, and the 

decant phase of reactor cycling was preceded by reservoir settling, minimizing solids loss 

during decant.   

3.4 DNA extraction 

DNA for qPCR analysis was extracted from biomass samples using a phenol/chloroform 

extraction procedure adopted from Cheng and Jiang (2006).
17

  Biomass was suspended in 

2mL of water and centrifuged at 8,000 g for 5 minutes.  The biomass pellet was washed 

twice with 400 uL of STE buffer (100 mM NaCl, 10 mM Tris/HCl, and 1mM EDTA), 

centrifuged at 8,000 g for 2 minutes, and then resuspended in 200 uL of 1X SSC buffer.  

100uL of Tris-saturated phenol was added, and the sample was mixed to lyse cells.  The 

product was centrifuged at 13,000 g for 5 minutes, and 160 mL of the aqueous supernatant 

was transferred to a clean centrifuge tube.  40 uL of 1X SSC buffer and 100 uL of 

chloroform were added.  This mixture was centrifuged at 13000 g for 5 minutes, and the 

aqueous supernatant was again transferred to a clean tube.  40 uL of 1X SSC buffer and 5 uL 
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of RNase were added, and the DNA was incubated at 37° C for 10 minutes.  After 

incubation, 100 uL of chloroform was added, and samples were mixed and centrifuged at 

13000 g for 5 minutes.  150 uL of the aqueous supernatant (containing the recovered DNA) 

was transferred to a new tube.
17

  After DNA extraction, the DNA quantity in each sample 

was determined, and all samples were diluted to a standard concentration of 125 ng/μl.  This 

concentration was used for the real-time PCR analysis.   

3.5  Primer selection 

The real-time PCR procedure requires specific DNA primers which isolate DNA sequences 

for amplification.  Previous studies on nitrifier genes provided guidelines for primer 

selection.  The bacterial amoA gene was isolated using the forward primer amoA-1F 

(5'-GGGGGTTTCTACTGGTGGT-3') and the reverse primer amoA-2R 

(5'-CCCCTCKGSAAAGCCTTCTTC-3').
14

  The nxrA gene was isolated using the forward 

primer F1norA (5'-CAGACCGACGTGTGCGAAAG-3') and the reverse primer R1norA 

(5'-TCYACAAGGAACGGAAGGTC-3').
18

  The Nitrospira genus was isolated using the 

forward primer EUB338f (5'-ACTCCTACGGGAGGCAGC-3') and the reverse primer 

Ntspa685r (5'-CGGGAATTCCGCGCTC-3').
19

  The real-time PCR protocol employed a 

SYBR Green master mix for analysis.  The thermal profile used consisted of:  10 min at 95° 

C; 30 cycles of 90 s at 95° C, 90 s at 55° C, and 90 s at 72° C; and a final elongation step of 

15 min at 72° C.   

 

4.  Results and Discussion 

The system effectively operated under low dissolved oxygen (DO) conditions.  DO was not 

detected over 0.04 mg/L.   This low dissolved oxygen concentration is essential if the 
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effluent of the partial nitrification is to be used as a substrate for the ANAMMOX process; 

the ANAMMOX process is inhibited at dissolved oxygen concentrations as low as 0.5% the 

air saturation concentration.
7
   

At the beginning of the reactor operation, the system contained a mixed culture of 

heterotrophs and autotrophs.  After 6 days of reactor operation, the controlled aeration did 

not provide sufficient oxygen to support nitrifier dominance (as evidenced by Figure 20 

below).  It is assumed that the mixed culture consisted mostly of heterotrophs in a primarily 

anoxic environment at this initial seeding stage.  Dissolved oxygen was supplied locally at 

the membrane surface, but the bulk dissolved oxygen concentration was low.   
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Figure 20.  Nitrogen profile of partial nitrification reactor after 6 days of operation.        ♦: 

NH4
+
-N; ■: NO3

-
-N; ▲:  NO2

-
-N 

After 14 days of reactor operation, ammonium was oxidized, but little nitrite and nitrate 

was detected in the reactor.  Because bulk dissolved oxygen was low and endogenous decay 

provided organic carbon, it can be assumed that denitrification converted nitrate to N2 gas, 

causing total nitrogen in the system to decrease as N2 was released from the system.  This 

decrease in ammonium can be seen in Figure 21 below.   
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Figure 21.  Nitrogen profile of partial nitrification reactor after 14 days of operation.        ♦: 

NH4
+
-N; ■: NO3

-
-N; ▲: NO2

-
-N 

 

After 26 days of operation, the reactor produced a significant amount of nitrite after 40 hours 

of operation.  Increased influent ammonium concentration aided in the nitrifier selection 

process.  Nitrite concentrations above 180 mg/L NO2
-
-N were observed at the end of the 

reactor cycle.  This trend is shown in Figure 22 below. 
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Figure 22.  Nitrogen profile of partial nitrification reactor after 26 days of operation.        ♦: 

NH4
+
-N; ■: NO3

-
-N; ▲: NO2

-
-N 

High influent ammonium concentrations are found in industrial applications, landfill 

leachate, and anaerobic digester supernatant.  However, domestic wastewater contains 50 

mg/L NH4
+
-N or less.  After successful selection of nitrifying organisms and effective 

production of nitrate at a high ammonium concentration, the system was tested at a low 

influent ammonium concentration.  HRT was decreased to 24 hours, and effective 
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ammonium oxidation and nitrite production were possible with minimal production of nitrate 

(Figure 23 below).   

 

Figure 23.  Partial nitrification at low influent ammonium concentration  ♦: NH4
+
-N;         ■: 

NO3
-
-N; ▲: NO2

-
-N 

The attachment of the ammonium oxidizing bacteria on the silicone membrane surface was 

a topic of interest.  To investigate this, sections of the silicone membrane with the developed 

attached biofilm were analyzed by the Microscopy and Nanoimaging Facility at Iowa State 

University.  Scanning electron microscopy was employed to view microorganism attachment 
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on the silicone surface.  Figure 24 below shows the biomass growth attached to the surface of 

the silicone membrane at 200x magnification.  Individual nitrifying organisms cannot be seen 

at this resolution.   

Figure 25 shows individual nitrifying organisms attached to the silicone membrane surface 

at 10,000x magnification.  A closer look is found in Figure 26.  Even at 20,000x 

magnification, pores could not be identified in the silicone membrane.  Individual organisms 

are shown attached to the top of this smooth silicone surface, indicating that attachment is 

quite delicate.   

 

Figure 24.  200x scanning electron microscope magnification of biomass attached to silicone 

membrane surface. 
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Figure 25.  10,000x scanning electron microscope magnification of individual organisms 

attached to silicone membrane surface. 
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Figure 26.  20,000x scanning electron microscope magnification of individual organisms 

attached to silicone membrane surface. 

The real-time PCR analysis concluded that ammonium oxidizing bacteria dominated the 

system, while nitrite oxidizing bacteria growth was suppressed.  The SYBR green 

fluorescence detection system showed this culture enrichment by detecting fluorescence.  

Two samples from each day were tested using the DNA extraction and qPCR protocol 

outlined in the Materials and Methods.  These results are observed in  

 

Table 7 below.   
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Table 7.  Ct values for real-time PCR analysis comparing ammonium oxidizing bacteria and 

nitrite oxidizing bacteria 

 

Nitrosomonas AOB 

(AmoA gene identifier) 

Nitrobacter NOB 

(NorA gene identifier) 

Nitrospira NOB    

(16S rRNA identifier) 

Day 0 - Seed 29.96 30.50 24.29 

Day 23 28.77 32.89 22.87 

Day 73 27.36 33.27 22.14 

 

This table displays the Ct values determined in real-time PCR assessment.  The Ct value is 

the PCR cycle number at which a threshold level of fluorescence is detected.  A lower Ct 

value indicates a higher concentration of the target organism in the culture. A higher Ct value 

indicates the target organism is being eliminated.   

 

Table 7 shows that the Ct value for ammonium oxidizers is decreasing, indicating a 

significantly higher concentration of these organisms at day 73 than at day 0.  Ct values for 

Nitrobacter nitrite oxidizing species increase, indicating these organisms are being 

eliminated.  The increase observed in Ct value for Nitrobacter nitrite oxidizing organisms 

indicates an approximate tenfold decrease in population of these nitrite oxidizers.  The Ct 

values for Nitrospira nitrite oxidizing bacteria is inconclusive; the qPCR identifier for this 

genus was different from the Nitrosomonas and Nitrobacter gene identifiers.  Therefore, 

while the Ct value indicates an increase in Nitrospira population, it cannot be compared to 

the increase or decrease of Nitrosomonas and Nitrobacter.   
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5.  Conclusions 

The partial nitrification system developed in this research effectively oxidized ammonium 

to nitrite, without producing a significant amount of nitrate.  The silicone membrane aeration 

system provided an attachment site for nitrifying organisms, and limited oxygen delivery to 

create a low dissolved-oxygen system which selected for ammonium oxidizing bacteria.  

Providing a long sludge age for these organisms allows them to flourish despite low biomass 

yield.  Real-time qPCR analysis confirmed the dominance of ammonium oxidizers over 

nitrite oxidizers.   
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CHAPTER 4:  ADDITIONAL RESULTS AND CONCLUSIONS 

Additional data collected 

In addition to the silicone membrane system developed, another hollow fiber membrane 

system was implemented.  This alternate system employed a polypropylene membrane 

bundle in a 0.7 liter reactor.  A recirculation pump was installed to pump reactor solution 

from the bottom of the reactor to the top; a magnetic stir bar was used to mix the reactor.  

This system was tested at various influent ammonium concentrations and hydraulic retention 

times to determine optimal conditions.  Air flowrate was limited to 36.4 ml/min, and air 

pressure (4 psi) was lower than the silicone membrane supply pressure (20-30 psi).  The 

system HRT was varied from 2 to 12 hours, depending on influent ammonium concentration 

and ammonium oxidation efficiency.  The pH gradient was similar to the silicone membrane 

reactors, but also displayed the “ammonium valley” feature described in the Guo et al. (2009) 

study.
8
  The system demonstrated partial nitrification capabilities, but effluent nitrates were 

higher than desirable.  The effluent nitrate level reached 40 mg/L at the end of a 6-hour 

cycle, as shown in Figure 27 below.  This excess effluent nitrate made this polypropylene 

membrane system undesirable for partial nitrification-ANAMMOX coupling application. 
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Figure 27.  Partial nitrification utilizing a polypropylene membrane aeration system.      ♦: 

NH4
+
-N; ■: NO2

-
-N; ▲:  NO3

-
-N 

The polypropylene aeration system does not limit oxygen to sufficiently suppress nitrite 

oxidizers.  This is evidenced by higher operational dissolved oxygen in the bulk solution of 

this alternate reactor (0.1-0.4 mg/L O2).  However, this higher dissolved oxygen could be a 
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result of a broken polypropylene membrane, causing excess air to enter the aqueous solution.  

This polypropylene membrane reactor deserves further investigation.   

Scanning electron microscopy was employed to examine the biofilm attachment to the 

polypropylene membrane surface.  Figure 28 shows a detialed SEM photo of this biofilm 

attachment mechanism.  The pores on the polypropylene are visible in the image, and the 

organisms appear to be attaching at the site of the pores, with some bacterial growth inserted 

into the pores.   

 

Figure 28.  Scanning electron microscope image of biomass attachment on polypropylene 

membrane surface, 5000x magnification 
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Recommendations for Future Research 

This research generates numerous questions which must be answered through further 

investigation.  The kinetics of the partial nitrification study could be further investigated, 

especially with regard to temperature.  If operated in a temperature-controlled environment, 

the ammonium removal rate could be correlated to operational temperature.  However, if 

temperature is raised above 30° C, then the selection pressure changes from oxygen affinity 

to selection based on differential kinetics.   

In order to reach the optimal ratio of 1:1.32 for coupling with the ANAMMOX system, an 

end-point of reaction must be determined to stop the system and cycle the SBR.  Based on 

pH, aeration time, or alkalinity consumption, an end-point for optimal NH4
+
: NO2

-
 ratio could 

be determined.  Additionally, the effects of a fixed pH of the system could be evaluated.  

This may optimize the nitrification conditions, instead of allowing pH to decrease as 

ammonium is consumed.  Alternatively, pH gradient could be utilized as an aeration 

end-point, or as a means of culture enrichment.  For instance, the microbial community 

selected at various aeration cut-off points could be evaluated.   

To improve removal efficiency, the density of the membranes in the reactor could be 

increased, thus maximizing the attached biomass in the system.  

Continued investigation of hollow fiber membranes is recommended.  Various materials and 

pore sizes could be investigated, and additional research with the polypropylene membranes 

is recommended.   
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