Xiong, Liming

Profile Picture
Email Address
lmxiong@iastate.edu
Birth Date
Research Projects
Organizational Units
Organizational Unit
Job Title
Associate Professor
Last Name
Xiong
First Name
Liming

Search Results

Now showing 1 - 10 of 11
No Thumbnail Available
Publication

Effect of a Long-Range Dislocation Pileup on the Atomic-Scale Hydrogen Diffusion near a Grain Boundary in Plastically Deformed bcc Iron

2023-08-17 , Peng, Yipeng , Ji, Rigelesaiyin , Phan, Thanh , Chen, Xiang , Zhang, Ning , Xu, Shuozhi , Bastawros, Ashraf , Xiong, Liming , Aerospace Engineering

In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and the atomic structure evolution at the GB being simultaneously retained, our main findings are: (i) the accumulation of tens of dislocations near the H-charged GB can induce a local internal stress as high as 3 GPa; (ii) the more dislocations piled up at the GB, the slower the H diffusion ahead of the slip–GB intersection; and (iii) H atoms diffuse fast behind the pileup tip, get trapped within the GB, and diffuse slowly ahead of the pileup tip. The CAC simulation-predicted local H diffusivity, 𝐷pileup−tip, and local stresses, 𝜎, are correlated with each other. We then consolidate such correlations into a mechanics model by considering the dislocation pileup as an Eshelby inclusion. These findings will provide researchers with opportunities to: (a) characterize the interplay between plasticity, H diffusion, and crack initiation underlying H-induced cracking (HIC); (b) develop mechanism-based constitutive rules to be used in diffusion–plasticity coupling models for understanding the interplay between mechanical and mass transport in materials at the continuum level; and (c) connect the atomistic deformation physics of polycrystalline materials with their performance in aqueous environments, which is currently difficult to achieve in experiments.

No Thumbnail Available
Publication

An atomistic-to-microscale computational analysis of the dislocation pileup-induced local stresses near an interface in plastically deformed two-phase materials

2022-03 , Xiong, Liming , Ji, Rigelesaiyin , Phan, Thanh , Gao, Wei , Levitas, Valery I. , Xiong, Liming , Aerospace Engineering , Mechanical Engineering , Ames Laboratory

Taking the two-phase material as a model system, here we perform atomistic-to-microscale computational analysis on how the dislocations pileup is formed at a buried interface through two-dimensional concurrent atomistic-continuum simulations. One novelty here is a simultaneous resolution of the m-level dislocation slip, the pileup-induced stress complexity, and the atomic-level interface structure evolution all in one single model. Our main findings are: (i) the internal stresses induced by a pileup spans a range up to hundreds of nanometers when tens of dislocations participate the pileup; (ii) the resulting stress concentration decays as a function of the distance, , away from the pileup tip, but deviates from the Eshelby model-based , where the interface was assumed to be rigid without allowing any local structure reconstruction; and (iii) the stress intensity factor at a pileup tip is linearly proportional to the dislocation density nearby the interface only when a few dislocations are involved in the pileup, but will suddenly ”upper bend” to a very high level when tens of or more dislocations arrive at the interface. The gained knowledge can be used to understand how the local stresses may dictate the plastic flow-induced phase transformations, twinning, or cracking in heterogeneous materials such as polycrystalline steel, Ti-, Mg-, high entropy alloys, fcc/bcc, fcc/hcp, and bcc/hcp composites, containing a high density of interfaces.

No Thumbnail Available
Publication

Lattice instability during phase transformations under multiaxial stress

2017-08-01 , Levitas, Valery , Xiong, Liming , Xiong, Liming , Aerospace Engineering , Mechanical Engineering , Ames Laboratory

A continuum/atomistic approach for predicting lattice instability during crystal-crystal phase transformations (PTs) is developed for the general loading with an arbitrary stress tensor and large strains. It is based on a synergistic combination of the generalized Landau-type theory for PTs and molecular dynamics (MD) simulations. The continuum approach describes the entire dissipative transformation process in terms of an order parameter, and the general form of the instability criterion is derived utilizing the second law of thermodynamics. The feedback from MD allowed us to present the instability criterion for both direct and reverse PTs in terms of the critical value of the modified transformation work, which is linear in components of the true stress tensor. It was calibrated by MD simulations for direct and reverse PTs between semiconducting silicon Si i and metallic Si ii phases under just two different stress states. Then, it describes hundreds of MD simulations under various combinations of three normal and three shear stresses. In particular, the atomistic simulations show that the effects of all three shear stresses along cubic axes on lattice instability of Si i are negligible, which is in agreement with our criterion.

No Thumbnail Available
Publication

Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study

2016-01-26 , Xiong, Liming , Xiong, Liming , Chen, Youping , McDowell, David L. , Aerospace Engineering

Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fields of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.

No Thumbnail Available
Publication

Atomistic mechanisms of phase nucleation and propagation in a model two-dimensional system

2022-12-07 , Shuang, Fei , Penghao, Xiao , Xiong, Liming , Gao, Wei , Aerospace Engineering

We present a computational study on the solid–solid phase transition of a model two-dimensional system between hexagonal and square phases under pressure. The atomistic mechanism of phase nucleation and propagation are determined using solid-state Dimer and nudged elastic band (NEB) methods. The Dimer is applied to identify the saddle configurations and NEB is applied to generate the transition minimum energy path (MEP) using the outputs of Dimer. Both the atomic and cell degrees of freedom are used in saddle search, allowing us to capture the critical nuclei with relatively small supercells. It is found that the phase nucleation in the model material is triggered by the localized shear deformation that comes from the relative shift between two adjacent atomic layers. In addition to the conventional layer-by-layer phase propagation, an interesting defect-assisted low barrier propagation path is identified in the hexagonal to square phase transition. The study demonstrates the significance of using the Dimer method in exploring unknown transition paths without a priori assumption. The results of this study also shed light on phase transition mechanisms of other solid-state and colloidal systems.

No Thumbnail Available
Publication

Passing waves from atomistic to continuum

2018-02-01 , Xiong, Liming , Diaz, Adrian , Xiong, Liming , McDowell, David L. , Chen, Youping , Aerospace Engineering

Progress in the development of coupled atomistic–continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic–continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic–continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic–continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic–continuum interfaces. This work is the first step towards developing a concurrent atomistic–continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

No Thumbnail Available
Publication

Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

2017-04-26 , Xiong, Liming , Xiong, Liming , Chen, Youping , McDowell, David L. , Aerospace Engineering

Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF). For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.

No Thumbnail Available
Publication

A finite-temperature coarse-grained atomistic approach for understanding the kink-controlled dynamics of micrometer-long dislocations in high-Peierls-barrier materials

2022-09-06 , Ji, Rigelesaiyin , Phan, Thanh , Chen, Youping , McDowell, David L. , Xiong, Liming , Aerospace Engineering

We present a phonon dynamics-based finite-temperature coarse-grained (FT-CG) atomistic approach for characterizing the kink-controlled dislocation dynamics in high-Peierls-barrier materials. The applicability of it is demonstrated through simulating the motion of a ~ 3 µm-long dislocation in a bcc iron sample containing ~ 230 million atoms. Cross-kink and debris are found on a µm-long dislocation at a lower stress than that on a nm-long dislocation. They are largely promoted by high-frequency/short-wavelength phonons. FT-CG is shown to be a first model of its kind that can predict the mobility of a µm-long dislocation without smearing out the atomic-level kink dynamics on it.

No Thumbnail Available
Publication

Ballistic-diffusive phonon heat transport across grain boundaries

2017-09-01 , Xiong, Liming , Li, Weixuan , Xiong, Liming , Li, Yang , Yang, Shengfeng , Zheng, Zexi , McDowell, David L. , Chen, Youping , Aerospace Engineering

The propagation of a heat pulse in a single crystal and across grain boundaries (GBs) is simulated using a concurrent atomistic-continuum method furnished with a coherent phonon pulse model. With a heat pulse constructed based on a Bose-Einstein distribution of phonons, this work has reproduced the phenomenon of phonon focusing in single and polycrystalline materials. Simulation results provide visual evidence that the propagation of a heat pulse in crystalline solids with or without GBs is partially ballistic and partially diffusive, i.e., there is a co-existence of ballistic and diffusive thermal transport, with the long-wavelength phonons traveling ballistically while the short-wavelength phonons scatter with each other and travel diffusively. To gain a quantitative understanding of GB thermal resistance, the kinetic energy transmitted across GBs is monitored on the fly and the time-dependent energy transmission for each specimen is measured; the contributions of coherent and incoherent phonon transport to the energy transmission are estimated. Simulation results reveal that the presence of GBs modifies the nature of thermal transport, with the coherent long-wavelength phonons dominating the heat conduction in materials with GBs. In addition, it is found that phonon-GB interactions can result in reconstruction of GBs.

No Thumbnail Available
Publication

Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni

2017-01-01 , Xiong, Liming , Xiong, Liming , Chen, Youping , McDowell, David L. , Aerospace Engineering

Screw dislocation cross-slip is important in dynamic recovery of deformed metals. A mobile screw dislocation segment can cross slip to annihilate an immobile screw dislocation segment with opposite Burgers vector, leaving excess dislocations of one kind in a crystal. Previous studies have found that the cross-slip process depends on both the local stress state and dislocation line length, yet a quantitative study of the combined effects of these two factors has not been conducted. In this work, we employ both dynamic concurrent atomistic-continuum (CAC) [L. Xiong, G. Tucker, D.L. McDowell, Y. Chen, J. Mech. Phys. Solids 59 (2011) 160–177] and molecular dynamics simulations to explore the shear stress- and line length-dependent screw dislocation cross-slip in face-centered cubic Ni. It is demonstrated that the CAC approach can accurately describe the 3-D cross-slip process at a significantly reduced computational cost, as a complement to other numerical methods. In particular, we show that the Fleischer (FL) [R.L. Fleischer, Acta Metall. 7 (1959) 134–135] type cross-slip, in which a stair-rod dislocation is involved, can be simulated in the coarse-grained domain. Our simulations show that as the applied shear stress increases, the cross-slip mechanism changes from the Friedel-Escaig (FE) [B. Escaig, J. Phys. 29 (1968) 225–239] type to the FL type. In addition, the critical shear stress for both cross-slip mechanisms depends on the dislocation line length. Moreover, the cross-slip of a screw dislocation with a length of 6.47 nm analyzed using periodic boundary conditions occurs via only the FL mechanism, whereas a longer dislocation with length of 12.94 nm can cross-slip via either the FE or FL process in Ni subject to different shear stresses.