Eisenmann, David

Profile Picture
Email Address
djeisen@iastate.edu
Birth Date
Title
Associate Teaching Professor
Academic or Administrative Unit
Organizational Unit
Center for Nondestructive Evaluation

The Center for Nondestructive Evaluation at Iowa State has been involved in the use of nondestructive evaluation testing (NDT) technologies to: assess the integrity of a substance, material or structure; assess the criticality of any flaws, and to predict the object’s remaining serviceability. NDT technologies used include ultrasonics and acoustic emissions, electromagnetic technologies, computer tomography, thermal imaging, and others.

History
In October of 1985 the CNDE was approved by the State Board of Regents after it had received a grant from the National Science Foundation (NSF) as an Industry/University Cooperative Research Center.

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

About
ORCID iD

Search Results

Now showing 1 - 1 of 1
No Thumbnail Available
Publication

Effects of Position, Orientation, and Metal Loss on Ground Penetrating Radar Signals from Structural Rebar

2016-01-01 , Margetan, Frank , Chou, Chien-Ping , Eisenmann, David , Ellis, Shelby

Past experimental work on a highway bridge in central Iowa [1] suggested that ground penetrating radar (GPR) signals could possibly be used to differentiate intact rebar from those having substantial metal loss due to corrosion. That study made use of the amplitudes of GPR signals reflected by rebar, as obtained using a commercial instrument operated in pulse/echo mode. Many factors can contribute to the strength of the echo seen from a given rebar, including the rebar’s length, its distance from and tilt angle relative to the antenna, and the location and size of the metal-loss region. In this paper we systematically investigate these geometric effects. We begin with measurements of reflected signals where only an air layer separates the antenna from the rebar. There, using standard ½-inch diameter rebar, the GPR signal is systematically studied as a function of the length of the rebar, the stand-off distance from the antenna, the rebar tilt angle, and the size of the metal-loss region. The metal loss region is conveniently simulated by taking two parallel and abutting rebar lengths and pulling them apart to introduce a small gap between them. After summarizing the measurements in air, we discuss efforts to extend the study to rebar embedded in concrete. One idea being explored is the use of a powdered “phantom” material (having GPR properties similar to concrete) which can be sandwiched between two concrete blocks. The rebar can then be inserted into the powder layer and its position and orientation can be altered at will. We conclude with a discussion of the implications of our studies to the practical detection of corroded rebar in bridge barrier rails.