Debinski, Diane

Profile Picture
Email Address
debinski@iastate.edu
Birth Date
Title
Affiliate Professor
Academic or Administrative Unit
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

About
ORCID iD

Search Results

Now showing 1 - 10 of 46
No Thumbnail Available
Publication

Evaluating Native Bee Communities and Nutrition in Managed Grasslands

2020-06-01 , Stein, D. S. , Toth, Amy , Pleasants, John , Debinski, Diane , Ecology, Evolution and Organismal Biology

Native pollinators are important for providing vital services in agroecosystems; however, their numbers are declining globally. Bees are the most efficient and diverse members of the pollinator community; therefore, it is imperative that management strategies be implemented that positively affect bee community composition and health. Here, we test responses of the bee and flowering plant communities to land management treatments in the context of grasslands in the upper Midwestern United States, a critical area with respect to bee declines. Twelve sites were selected to examine floral resources and wild bee communities based on three different types of grasslands: tallgrass prairie remnants, ungrazed restorations, and grazed restorations. Total bee abundance was significantly higher in ungrazed restorations than remnants, but there were no significant differences among grasslands in community composition or Shannon diversity. Across the three grassland types we also examined mass and lipid stores as nutritional health indicators in three sweat bees (Halictidae), Augochlora pura, Agapostemon virescens, and Halictus ligatus. Although there were no differences in lipid content, total average bee mass was significantly higher in Ag. virescens collected from ungrazed restorations as compared to remnants. Floral abundance of native and non-native species combined was significantly higher in grazed restorations compared to remnants and ungrazed restorations. However, ungrazed restorations had higher abundance and richness of native flowering ramets. These data suggest that bee abundance and nutrition are driven by high abundance of native flowering plant species, rather than total flowering plants.

No Thumbnail Available
Publication

Occupancy modeling of Parnassius clodius butterfly populations in Grand Teton National Park, Wyoming

2018-05-03 , Szcodronski, Kimberly , Debinski, Diane , Klaver, Robert , Natural Resource Ecology and Management , Ecology, Evolution and Organismal Biology

Estimating occupancy patterns and identifying vegetation characteristics that influence the presence of butterfly species are essential approaches needed for determining how habitat changes may affect butterfly populations in the future. The montane butterfly species, Parnassius clodius, was investigated to identify patterns of occupancy relating to habitat variables in Grand Teton National Park and Bridger-Teton National Forest, Wyoming, United States. A series of presence–absence surveys were conducted in 2013 in 41 mesic to xeric montane meadows that were considered suitable habitat for P. clodius during their flight season (June–July) to estimate occupancy (ψ) and detection probability (p). According to the null constant parameter model, P. clodius had high occupancy of ψ = 0.78 ± 0.07 SE and detection probability of p = 0.75 ± 0.04 SE. In models testing covariates, the most important habitat indicator for the occupancy of P. clodius was a strong negative association with big sagebrush (Artemisia tridentata; β = − 21.39 ± 21.10 SE) and lupine (Lupinus spp.; β = − 20.03 ± 21.24 SE). While P. clodius was found at a high proportion of meadows surveyed, the presence of A. tridentata may limit their distribution within montane meadows at a landscape scale because A. tridentata dominates a large percentage of the montane meadows in our study area. Future climate scenarios predicted for high elevations globally could cause habitat shifts and put populations of P. clodius and similar non-migratory butterfly populations at risk.

No Thumbnail Available
Publication

Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change

2017-05-01 , Kane, Kristin , Debinski, Diane , Anderson, Chris , Scasta, John , Engle, David , Miller, James , Ecology, Evolution and Organismal Biology , Agronomy

Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss.

No Thumbnail Available
Publication

Monarch Oviposition and Larval Survivalon Nine Native Milkweed Species Duringthe 2016 Breeding Season

2017-01-01 , Pocius, Victoria , Hellmich, Richard , Debinski, Diane , Extension and Experiment Station Publications , Ecology, Evolution and Organismal Biology

The Iowa Monarch Conservation Consortium was established March 2015. Adding milkweeds to agricultural landscapes is one of many Consortium goals. In order to further monarch butterfly conservation efforts, scientists need more information about milkweed phenology and persistence on the landscape, and how monarchs are using these plants, because milkweeds now are absent from most agricultural fields. This is the second year of a study to examine both oviposition preference and larval survival on nine milkweed species endemic to Iowa. These data will be used as a baseline for informing monarch habitat conservation and restoration efforts across the Midwest.

No Thumbnail Available
Publication

Evaluating the Utility of Species Distribution Models in Informing Climate Change-Resilient Grassland Restoration Strategy

2019-02-15 , Lyon, Nicholas , Debinski, Diane , Rangwala, Imtiaz , Ecology, Evolution and Organismal Biology

Tallgrass prairie ecosystems in North America are heavily degraded and require effective restoration strategies if prairie specialist taxa are to be preserved. One common management tool used to restore grassland is the application of a seed-mix of native prairie plant species. While this technique is effective in the short-term, it is critical that species' resilience to changing climate be evaluated when designing these mixes. By utilizing species distribution models (SDMs), species' bioclimatic envelopes–and thus the geographic area suitable for them–can be quantified and predicted under various future climate regimes, and current seed-mixes may be modified to include more climate resilient species or exclude more affected species. We evaluated climate response on plant functional groups to examine the generalizability of climate response among species of particular functional groups. We selected 14 prairie species representing the functional groups of cool-season and warm-season grasses, forbs, and legumes and we modeled their responses under both a moderate and more extreme predicted future. Our functional group “composite maps” show that warm-season grasses, forbs, and legumes responded similarly to other species within their functional group, while cool-season grasses showed less inter-species concordance. The value of functional group as a rough method for evaluating climate-resilience is therefore supported, but candidate cool-season grass species will require more individualized attention. This result suggests that seed-mix designers may be able to use species with more occurrence records to generate functional group-level predictions to assess the climate response of species for which there are prohibitively few occurrence records for modeling.

No Thumbnail Available
Publication

Monarch butterflies do not place all of their eggs in one basket: oviposition on nine Midwestern milkweed species

2018-01-01 , Pocius, Victoria , Hellmich, Richard , Pleasants, John , Debinski, Diane , Bidne, Keith , Entomology , Ecology, Evolution and Organismal Biology

Over the past two decades, the population of monarch butterflies east of the Rocky Mountains has experienced a significant decline in overwintering numbers. Habitat restoration that includes planting milkweeds is essential to boost monarch numbers within the breeding range. Milkweeds are the only host plants for larval monarch butterflies, but female oviposition preference for different milkweed species, especially those with overlapping ranges, is not well documented. We examined the relative inclination to lay eggs on nine milkweed species native to Iowa (no choice), and oviposition preference (choice) among the four most commonly occurring Iowa species (Asclepias incarnata, Asclepias syriaca, Asclepias tuberosa, and Asclepias verticillata). In both experiments, eggs were counted daily for four days. The milkweeds tested were Asclepias exaltata (poke milkweed), Asclepias hirtella (tall green milkweed), A. incarnata (swamp milkweed), Asclepias speciosa (showy milkweed), Asclepias sullivantii (prairie milkweed), A. syriaca (common milkweed), A. tuberosa (butterfly milkweed), A. verticillata (whorled milkweed), and Cynanchum laeve (honeyvine milkweed). When females were given only a single species on which to lay eggs, there were significant differences among milkweed species in the average number of eggs laid; A. incarnata had the highest average egg count. When females were given a choice among A. incarnata, A. syriaca, A. tuberosa, and A. verticillata, there were also differences among milkweed species in the number of eggs laid; again, A. incarnata had the highest average number of eggs laid. Additionally, females laid more total eggs when four plants of different milkweed species were available than when there were four plants of a single milkweed species. Our results show that monarch butterflies will lay eggs on all nine milkweeds, but that there are clear preferences for some milkweed species over others.

No Thumbnail Available
Publication

Effects of experimentally reduced snowpack and passive warming on montane meadow plant phenology and floral resources

2017-03-01 , Sherwood, J. A. , Debinski, D. M. , Caragea, P. C. , Debinski, Diane , Germino, M. J. , Ecology, Evolution and Organismal Biology , Statistics

Climate change can have a broad range of effects on ecosystems and organisms, and early responses may include shifts in vegetation phenology and productivity that may not coincide with the energetics and forage timing of higher trophic levels. We evaluated phenology, annual height growth, and foliar frost responses of forbs to a factorial experiment of snow removal (SR) and warming in a high‐elevation meadow over two years in the Rocky Mountains, United States. Species included arrowleaf balsamroot (Balsamorhiza sagittata , early‐season emergence and flowering) and buckwheat (Eriogonum umbellatum, semi‐woody and late‐season flowering), key forbs for pollinator and nectar‐using animal communities that are widely distributed and locally abundant in western North America. Snow removal exerted stronger effects than did warming, and advanced phenology differently for each species. Specifically, SR advanced green‐up by a few days for B. sagittata to >2 wk in E. umbellatum , and led to 5‐ to 11‐d advances in flowering of B. sagittata in one year and advances in bud break in 3 of 4 species/yr combinations. Snow removal increased height of E. umbellatum appreciably (~5 cm added to ~22.8 cm in control), but led to substantial increases in frost damage to flowers of B. sagittata . Whereas warming had no effects on E. umbellatum , it increased heights of B. sagittata by >6 cm (compared to 30.7 cm in control plots) and moreover led to appreciable reductions in frost damage to flowers. These data suggest that timing of snowmelt, which is highly variable from year to year but is advancing in recent decades, has a greater impact on these critical phenological, growth, and floral survival traits and floral/nectar resources than warming per se, although warming mitigated early effects of SR on frost kill of flowers. Given the short growing season of these species, the shifts could cause uncoupling in nectar availability and timing of foraging.

No Thumbnail Available
Publication

Monarch Butterflies Show Differential Utilization of Nine Midwestern Milkweed Species

2018-10-01 , Pocius, Victoria Marie , Pleasants, John , Bradbury, Steven , Hellmich, Richard , Bidne, Keith , Debinski, Diane , Blodgett, Sue , Natural Resource Ecology and Management , Entomology , Ecology, Evolution and Organismal Biology

Monarch butterfly overwintering numbers have declined over the past 20 years. Restoring habitat that includes milkweeds, the only host plants for larval monarch butterflies, is necessary to increase monarch numbers within the breeding range. The value of different milkweed species for restoration will depend, in part, on the extent to which they are utilized by ovipositing females. The number of eggs laid on different species over a season will be a function of plant size and phenology as well as female preference. We examined seasonal egg deposition and females' oviposition choices by comparing the number of eggs laid by free-flying wild monarchs on each of nine native milkweed species occurring in Iowa (Asclepias syriaca, Asclepias tuberosa, Asclepias incarnata, Asclepias verticillata, Asclepias exaltata, Asclepias hirtella, Asclepias speciosa, Asclepias sullivantii, and Cynanchum laeve). One plot, consisting of clusters of each of the nine species, was established at each of 14 sites across the state of Iowa. Eggs were counted weekly in June, July and August 2015–2017. The highest egg totals were recorded on A. incarnata and A. syriaca in all years. Fewer eggs were counted on A. exaltata, A. hirtella, A. tuberosa, A. verticillata, and C. laeve. Our results show that monarchs prefer some milkweed species over others, but that they can use all nine native milkweed species for oviposition.

No Thumbnail Available
Publication

Milkweed Matters: Monarch Butterfly (Lepidoptera: Nymphalidae) Survival and Development on Nine Midwestern Milkweed Species

2017-09-07 , Pocius, Victoria , Hellmich, Richard , Pleasants, John , Bidne, Keith , Debinski, Diane , Brower, L. , Ecology, Evolution and Organismal Biology , Entomology , Iowa Monarch Conservation Consortium

The population of monarch butterflies east of the Rocky Mountains has experienced a significant decline over the past 20 yr. In order to increase monarch numbers in the breeding range, habitat restoration that includes planting milkweed plants is essential. Milkweeds in the genus Asclepias and Cynanchum are the only host plants for larval monarch butterflies in North America, but larval performance and survival across nine milkweeds native to the Midwest is not well documented. We examined development and survival of monarchs from first-instar larval stages to adulthood on nine milkweed species native to Iowa. The milkweeds included Asclepias exaltata (poke milkweed) (Gentianales: Apocynaceae), Asclepias hirtella (tall green milkweed) (Gentianales: Apocynaceae), Asclepias incarnata (swamp milkweed) (Gentianales: Apocynaceae), Asclepias speciosa (showy milkweed) (Gentianales: Apocynaceae), Asclepias sullivantii (prairie milkweed) (Gentianales: Apocynaceae), Asclepias syriaca (common milkweed) (Gentianales: Apocynaceae), Asclepias tuberosa (butterfly milkweed) (Gentianales: Apocynaceae), Asclepias verticillata (whorled milkweed) (Gentianales: Apocynaceae), and Cynanchum laeve (honey vine milkweed) (Gentianales: Apocynaceae). In greenhouse experiments, fewer larvae that fed on Asclepias hirtella and Asclepias sullivantii reached adulthood compared with larvae that fed on the other milkweed species. Monarch pupal width and adult dry mass differed among milkweeds, but larval duration (days), pupal duration (days), pupal mass, pupal length, and adult wet mass were not significantly different. Both the absolute and relative adult lipids were different among milkweed treatments; these differences are not fully explained by differences in adult dry mass. Monarch butterflies can survive on all nine milkweed species, but the expected survival probability varied from 30 to 75% among the nine milkweed species.

No Thumbnail Available
Publication

Performance of Early Instar Monarch Butterflies (Danaus plexippus L.) on Nine Milkweed Species Native to Iowa

2017-01-01 , Pocius, Victoria , Hellmich, Richard , Bidne, Keith , Debinski, Diane , Hunter, Frances , Entomology , Ecology, Evolution and Organismal Biology

Over the past two decades, the population of monarch butterflies east of the Rocky Mountains has experienced a significant decline. Habitat restoration that includes milkweed plants is crucial to boost population numbers in the breeding range. Monarch butterfly larvae use milkweeds as their only host plant, but larval performance on different milkweed species is not well documented. We examined early instar survival and growth on nine milkweed species native to Iowa. These included Asclepias exaltata (poke milkweed), A. hirtella (tall green milkweed), A. incarnata (swamp milkweed), A. speciosa (showy milkweed), A. sullivantii (prairie milkweed), A. syriaca (common milkweed), A. tuberosa (butterfly milkweed), A. verticillata (whorled milkweed), and Cynanchum laeve (honey vine milkweed). In laboratory and greenhouse experiments, larval survival on all nine milkweed species did not differ. Larvae that fed on C. laeve plants were an instar behind larvae that fed on any other species, while larvae that fed on A. verticillata weighed more than larvae that fed on any other species. Our results show that early instar larvae can survive on all nine milkweed species.