Dogandžić,
Aleksandar
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name
Search Results
Projected Nesterov’s Proximal-Gradient Algorithm for Sparse Signal Recovery
We develop a projected Nesterov's proximal-gradient (PNPG) approach for sparse signal reconstruction that combines adaptive step size with Nesterov's momentum acceleration. The objective function that we wish to minimize is the sum of a convex differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term. We apply sparse signal regularization where the signal belongs to a closed convex set within the closure of the domain of the NLL; the convex-set constraint facilitates flexible NLL domains and accurate signal recovery. Signal sparsity is imposed using the ℓ1 -norm penalty on the signal's linear transform coefficients. The PNPG approach employs a projected Nesterov's acceleration step with restart and a duality-based inner iteration to compute the proximal mapping. We propose an adaptive step-size selection scheme to obtain a good local majorizing function of the NLL and reduce the time spent backtracking. Thanks to step-size adaptation, PNPG converges faster than the methods that do not adjust to the local curvature of the NLL. We present an integrated derivation of the momentum acceleration and proofs of O(k−2) objective function convergence rate and convergence of the iterates, which account for adaptive step size, inexactness of the iterative proximal mapping, and the convex-set constraint. The tuning of PNPG is largely application independent. Tomographic and compressed-sensing reconstruction experiments with Poisson generalized linear and Gaussian linear measurement models demonstrate the performance of the proposed approach.
Blind beam-hardening correction from Poisson measurements
Polychromatic X-ray CT Image Reconstruction and Mass-Attenuation Spectrum Estimation
A Fast Proximal Gradient Algorithm for Reconstructing Nonnegative Signals with Sparse Transform Coefficients
We develop a fast proximal gradient scheme for reconstructing nonnegative signals that are sparse in a transform domain from underdetermined measurements. This signal model is motivated by tomographic applications where the signal of interest is known to be nonnegative because it represents a tissue or material density. We adopt the unconstrained regularization framework where the objective function to be minimized is a sum of a convex data fidelity (negative log-likelihood (NLL)) term and a regularization term that imposes signal nonnegativity and sparsity via an `1-norm constraint on the signal’s transform coefficients. This objective function is minimized via Nesterov’s proximal-gradient method with function restart, where the proximal mapping is computed via alternating direction method of multipliers (ADMM). To accelerate the convergence, we develop an adaptive continuation scheme and a step-size selection scheme that accounts for varying local Lipschitz constant of the NLL. In the numerical examples, we consider Gaussian linear and Poisson generalized linear measurement models. We compare the proposed penalized NLL minimization approach and existing signal reconstruction methods via compressed sensing and tomographic reconstruction experiments and demonstrate that, by exploiting both the nonnegativity of the underlying signal and sparsity of its wavelet coefficients, we can achieve significantly better reconstruction performance than the existing methods.
Upper-Bounding the Regularization Constant for Convex Sparse Signal Reconstruction
Consider reconstructing a signal x by minimizing a weighted sum of a convex differentiable negative log-likelihood (NLL) (data-fidelity) term and a convex regularization term that imposes a convex-set constraint on x and enforces its sparsity using ℓ1-norm analysis regularization. We compute upper bounds on the regularization tuning constant beyond which the regularization term overwhelmingly dominates the NLL term so that the set of minimum points of the objective function does not change. Necessary and sufficient conditions for irrelevance of sparse signal regularization and a condition for the existence of finite upper bounds are established. We formulate an optimization problem for finding these bounds when the regularization term can be globally minimized by a feasible x and also develop an alternating direction method of multipliers (ADMM) type method for their computation. Simulation examples show that the derived and empirical bounds match.
Atomic library optimization for pulse ultrasonic sparse signal decomposition and reconstruction
Polychromatic Sparse Image Reconstruction and Mass Attenuation Spectrum Estimation via B-spline Basis Function Expansion
We develop a sparse image reconstruction method for polychromatic computed tomography(CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuationspectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.
Blind X-ray CT Image Reconstruction from Polychromatic Poisson Measurements
We develop a framework for reconstructing images that are sparse in an appropriate transform domain from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and incident-energy spectrum are unknown. Assuming that the object that we wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplaceintegral form. The mass-attenuation spectrum is then expanded into basis functions using B-splines of order one. We consider a Poisson noise model and establish conditions for biconvexity of the corresponding negative log-likelihood (NLL) function with respect to the density-map and mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for constrained minimization of a penalized NLL objective function, where penalty terms ensure nonnegativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity of the density-map image, imposed using a convex total-variation (TV) norm; the resulting objective function is biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGSB) iteration for updating the image and mass-attenuation spectrum parameters, respectively. We prove the Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Our framework applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and `1 norm of 2D discrete wavelet transform (DWT) image coefficien- s. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme.
Blind polychromatic X-ray CT reconstruction from Poisson measurements
We develop a sparse image reconstruction method for Poisson distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (LBFGS- B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme.
Projected Nesterov’s Proximal-Gradient Signal Recovery from Compressive Poisson Measurements
We develop a projected Nesterov’s proximalgradient (PNPG) scheme for reconstructing sparse signals from compressive Poisson-distributed measurements with the mean signal intensity that follows an affine model with known intercept. The objective function to be minimized is a sum of convex data fidelity (negative log-likelihood (NLL)) and regularization terms. We apply sparse signal regularization where the signal belongs to a nonempty closed convex set within the domain of the NLL and signal sparsity is imposed using total-variation (TV) penalty. We present analytical upper bounds on the regularization tuning constant. The proposed PNPG method employs projected Nesterov’s acceleration step, function restart, and an adaptive stepsize selection scheme that accounts for varying local Lipschitz constant of the NLL.We establish O k2 convergence of the PNPG method with step-size backtracking only and no restart. Numerical examples compare PNPG with the state-of-the-art sparse Poisson-intensity reconstruction algorithm (SPIRAL).