Soil‐nitrogen, potentially mineralizable‐nitrogen, and field condition information marginally improves corn nitrogen management

Thumbnail Image
Date
2020-01-01
Authors
Clark, Jason
Fernández, Fabián
Veum, Kristen
Camberato, James
Carter, Paul
Ferguson, Richard
Franzen, David
Kaiser, Daniel
Kitchen, Newell
Laboski, Carrie
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sawyer, John
Emeritus Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Anaerobic potentially mineralizable nitrogen (PMN) combined with preplant nitrate test (PPNT) or pre‐sidedress nitrate test (PSNT) may improve corn (Zea mays L.) N management. Forty‐nine corn N response studies were conducted across the U.S. Midwest to evaluate the capacity of PPNT and PSNT to predict grain yield, N uptake, and economic optimal N rate (EONR) when adjusted by soil sampling depth, soil texture, temperature, PMN, and initial NH4–N from PMN analysis. Pre‐plant soil samples were obtained for PPNT (0‐ to 30‐, 30‐ to 60‐, 60‐ to 90‐cm depths) and PMN (0‐ to 30‐cm depth) before corn planting and N fertilization. In‐season soil samples were obtained at the V5 corn development stage for PSNT (0‐ to 30‐, 30‐ to 60‐cm depths) at 0 kg N ha−1 at‐planting rate and for PMN when 0 and 180 kg N ha−1 was applied at planting. Grain yield, N uptake, and EONR were best predicted when separating soils by texture or sites by annual growing degree‐days and including PMN and initial NH4–N with either NO3–N test. Using PSNT (mean R2 = .30)‐instead of PPNT (mean R2 = .19)‐based models normally increased predictability of corn agronomic variables by a mean of 11%. Including PMN and initial NH4–N with PPNT or PSNT only marginally improved predictability of grain yield, N uptake, and EONR (R2 increase ≤ .33; mean R2 = .35). Therefore, including PMN with PPNT or PSNT is not suggested as a tool to improve N fertilizer management in the U.S. Midwest.

Comments

This article is published as Clark, Jason D., Fabián G. Fernández, Kristen S. Veum, James J. Camberato, Paul R. Carter, Richard B. Ferguson, David W. Franzen et al. "Soil‐nitrogen, potentially mineralizable‐nitrogen, and field condition information marginally improves corn nitrogen management." Agronomy Journal (2020). doi: 10.1002/agj2.20335.

Description
Keywords
Citation
DOI
Copyright
Collections