Parity-based Data Outsourcing: Extension, Implementation, and Evaluation

Thumbnail Image
Hu, Zhenbi
Major Professor
Ying Cai
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence

Related Units

Journal Issue
Is Version Of

Our research has developed a Parity-based Data Outsourcing (PDO) model. This model outsources a set of raw data by associating it with a set of parity data and then distributing both sets of data among a number of cloud servers that are managed independently by different service providers. Users query the servers for the data of their interest and are allowed to perform both authentication and correction. The former refers to the capability of verifying if the query result they receive is correct (i.e., all data items that satisfy the query condition are received, and every data item received is original from the data owner), whereas the latter, the capability of correcting the corrupted data, if any. Existing techniques all rely on complex cryptographic techniques and require the cloud server to build verification objects. In particular, they support only query authentication, but not error correction. In contrast, our approach enables users to perform both query authentication and error correction, and does so without having to install any additional software on a cloud server, which makes it possible to take advantage of the many cloud data management services available on the market today.

This thesis makes the following contributions. 1) We extend the PDO model, which was originally designed for one-dimensional data, to handle multi-dimensional data. 2) We implement the PDO model, including parity coding, data encoding, data retrieval, query authentication and correction. 3) We evaluate the performance of the PDO model. We compare it with Merkle Hash Tree (MH-tree) and Signature Chain, two existing techniques that support query authentication, in terms of storage, communication, and computation overhead.

Subject Categories
Sun Jan 01 00:00:00 UTC 2017