Performance Evaluations of Three Silt Fence Practices Using a Full-Scale Testing Apparatus

Thumbnail Image
Date
2017-01-01
Authors
Bugg, R. Alan
Donald, Wesley
Zech, Wesley
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Perez, Michael
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Erosion and sediment controls on construction sites minimize environmental impacts from sediment-laden stormwater runoff. Silt fence, a widely specified perimeter control practice on construction projects used to retain sediment on-site, has limited performance-based testing data. Silt fence failures and resultant sediment losses are often the result of structural failure. To better understand silt fence performance, researchers at the Auburn University-Erosion and Sediment Control Testing Facility (AU-ESCTF) have evaluated three silt fence options to determine possible shortcomings using standardized full-scale testing methods. These methods subject silt fence practices to simulated, in-field conditions typically experienced on-site without the variability of field testing or the limited application of small-scale testing. Three different silt fence practices were tested to evaluate performance, which included: (1) Alabama Department of Transportation (ALDOT) Trenched Silt Fence, (2) ALDOT Sliced Silt Fence, and (3) Alabama Soil and Water Conservation Committee (AL-SWCC) Trenched Silt Fence. This study indicates that the structural performance of a silt fence perimeter control is the most important performance factor in retaining sediment. The sediment retention performance of these silt fence practices was 82.7%, 66.9% and 90.5%, respectively. When exposed to large impoundment conditions, both ALDOT Trench and Sliced Silt Fence practices failed structurally, while the AL-SWCC Trenched Silt Fence did not experience structural failure.

Comments

This article is published as Bugg, R. Alan, Wesley Donald, Wesley Zech, and Michael Perez. "Performance Evaluations of Three Silt Fence Practices Using a Full-Scale Testing Apparatus." Water 9, no. 7 (2017): 502. DOI: 10.3390/w9070502. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections