Visualizing fluidized beds with X-rays

Thumbnail Image
Date
2008-01-01
Authors
Franka, Nathan
Major Professor
Advisor
Theodore J. Heindel
Robert C. Brown
Hui Hu
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Abstract

This study applies minimum fluidization velocity experiments, X-ray computed tomography (CT), X-ray stereography, and particle tracking to fluidized beds of glass beads, ground walnut shell, and ground corncob operating with a variety of flow conditions. 3-D local, time-averaged gas holdup is calculated from CT data, while dynamic features are captured by X-ray stereography. The results show that CT is most effective on glass bead fluidized beds. Due to high X-ray attenuation, glass bead CT data has higher resolution than walnut shell and corncob beds. Glass bead gas holdup data also feature the lowest noise due to the high homogeneity of the beads. Conversely, stereography is most effective in corncob and walnut shell fluidized beds. High X-ray penetration in these beds allows clear observation of internal flow features. It is also determined that increasing the superficial gas velocity in the bed decreases the effects of side air injection.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008