Effects of phosphoroamides on transformations of urea nitrogen in soil

Thumbnail Image
Chai, Horng-Shyang
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of

The growing importance of urea fertilizer in world agriculture has stimulated research to find compounds that will retard hydrolysis of urea by soil urease and thereby reduce the problems encountered in use of this fertilizer. Numerous compounds have been patented or proposed as inhibitors of urea hydrolysis in soil, but only phenylphosphorodiamidate (PPD) has attracted significant attention. Recent work showed that PPD was the most effective of 12 phosphoroamides evaluated as soil urease inhibitors and was considerably more effective than other compounds proposed for inhibition of urease activity in soil;The potential value of six new phosphoroamides for reduction of the problems encountered in use of urea fertilizer was studied by determining the effects of different amounts of these compounds on urea hydrolysis, nitrification, denitrification, nitrite accumulation, mineralization of organic N, and gaseous loss of urea N as NH(,3) in soils treated with urea. The phosphoroamides used were N-(diaminophosphinyl)-cyclohexylamine (DPCA), N-benzyl-N-methyl phosphoric triamide, diethyl phosphoric triamide, trichloroethyl phosphorodiamidate (TEPD), dimethyl phosphoric triamide, and N-butyl phosphorothioic triamide (NBPT). The soils used were selected to obtain a range in properties, and the effects of the six phosphoroamides studied were compared with those of two compounds known to be among the most effective compounds thus far proposed for retarding urea hydrolysis in soils (PPD and hydroquinone);All six of the phosphoroamides evaluated compared favorably with hydroquinone as soil urease inhibitors and two of them, NBPT and DPCA, were superior to PPD for retarding urea hydrolysis, nitrite accumulation, and ammonia volatilization in soils treated with urea. None of the phosphoroamides studied significantly affected denitrification of nitrate or mineralization of organic N (as alanine) when applied at the rate of 10 or 50 (mu)g g('-1) soil, and only TEPD had a significant inhibitory effect on nitrification when applied at the rate of 5 or 10 (mu)g g('-1) soil;The work reported indicates that NBPT is the most effective compound thus far proposed for inhibition of soil urease activity and deserves consideration as a fertilizer amendment for retarding hydrolysis of urea fertilizer in soil.

Wed Jan 01 00:00:00 UTC 1986