Note on Nordhaus-Gaddum Problems for Colin de Verdière type Parameters Barrett, Wayne Fallat, Shaun Hall, H. Tracy Hogben, Leslie Hogben, Leslie
dc.contributor.department Electrical and Computer Engineering
dc.contributor.department Mathematics 2018-02-18T05:30:28.000 2020-06-30T06:00:49Z 2020-06-30T06:00:49Z Tue Jan 01 00:00:00 UTC 2013 2013-10-07
dc.description.abstract <p>We establish the bounds 4 3 6 b 6 b 6 p 2, where b and b are the Nordhaus-Gaddum sum upper bound multipliers, i.e., (G)+(G) 6 bjGj and (G)+(G) 6 bjGj for all graphs G, and and are Colin de Verdiere type graph parameters. The Nordhaus-Gaddum sum lower bound for and is conjectured to be jGj 2, and if these parameters are replaced by the maximum nullity M(G), this bound is called the Graph Complement Conjecture in the study of minimum rank/maximum nullity problems.</p>
dc.description.comments <p>This article is published as Barrett, Wayne, Shaun M. Fallat, H. Tracy Hall, and Leslie Hogben. "Note on Nordhaus-Gaddum Problems for Colin de Verdière type Parameters." <em>The Electronic Journal of Combinatorics</em> 20, no. 3 (2013): P56. DOI: <a href="" target="_blank">10.37236/2570</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1067
dc.identifier.contextkey 9873221
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/62
dc.language.iso en
dc.source.bitstream archive/|||Sat Jan 15 01:18:18 UTC 2022
dc.source.uri 10.37236/2570
dc.subject.disciplines Algebra
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.keywords Nordhaus-Gaddum
dc.subject.keywords Colin de Verdière type parameter
dc.subject.keywords Graph Complement Conjecture
dc.subject.keywords maximum nullity
dc.subject.keywords minimum rank
dc.subject.keywords graph complement
dc.title Note on Nordhaus-Gaddum Problems for Colin de Verdière type Parameters
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 0131698a-00df-41ad-8919-35fb630b282b
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
Original bundle
Now showing 1 - 1 of 1
257.88 KB
Adobe Portable Document Format