Manipulation of electronic property of epitaxial graphene on SiC substrate by Pb intercalation

Thumbnail Image
Wang, Jinjin
Kim, Minsung
Chen, Liangyao
Ho, Kai-Ming
Tringides, Michael
Wang, Cai-Zhuang
Wang, Songyou
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Ames National LaboratoryPhysics and Astronomy

Manipulating the electronic properties of graphene has been a subject of great interest since it can aid material design to extend the applications of graphene to many different areas. In this paper, we systematically investigate the effect of lead (Pb) intercalation on the structural and electronic properties of epitaxial graphene on the SiC(0001) substrate. We show that the band structure of Pb-intercalated few-layer graphene can be effectively tuned through changing intercalation conditions, such as coverage, location of Pb, and the initial number of graphene layers. Lead intercalation at the interface between the buffer layer (BL) and the SiC substrate decouples the BL from the substrate and transforms the BL into a p-doped graphene layer. We also show that Pb atoms tend to donate electrons to neighboring layers, leading to an n-doping graphene layer and a small gap in the Dirac cone under a sufficiently high Pb coverage. This paper provides useful guidance for manipulating the electronic properties of graphene layers on the SiC substrate.

Subject Categories