Discrete element simulations and constitutive modeling of dense granular flows

Thumbnail Image
Date
2010-01-01
Authors
Vidyapati, Vidyapati
Major Professor
Advisor
Shankar Subramaniam
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Abstract

The aim of this study is to understand and explore the rheology of

dense granular flow, in particular the phenomenon of regime

transition, using both microscale DEM (discrete element method)

simulations and macroscale modeling methods. The rheology of dense sheared granular flow in a Couette device is simulated using DEM. It is found that DEM simulations are capable of capturing the regime transition from quasi-static to intermediate behavior. A constitutive model based on the order parameter (OP) framework is refined, and a linear model with new model coefficients extracted from data of 3D DEM simulations of homogeneously sheared granular flows is proposed. The performance of different constitutive models including the refined OP model is tested in the intermediate regime of granular flows. None of these models captures the correct scaling of shear stress with shear rate in the intermediate regime, leading to the conclusion that further development of constitutive models is needed for dense granular flow in the intermediate regime.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2010