Human-centric verification for software safety and security

Thumbnail Image
Awadhutkar, Payas
Major Professor
Suraj C Kothari
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of

Software forms a critical part of our lives today. Verifying software to avoid violations of safety and security properties is a necessary task. It is also imperative to have an assurance that the verification process was correct. We propose a human-centric approach to software verification. This involves enabling human-machine collaboration to detect vulnerabilities and to prove the correctness of the verification.

We discuss two classes of vulnerabilities. The first class is Algorithmic Complexity Vulnerabilities (ACV). ACVs are a class of software security vulnerabilities that cause denial-of-service attacks. The description of an ACV is not known a priori. The problem is equivalent to searching for a needle in the haystack when we don't know what the needle looks like. We present a novel approach to detect ACVs in web applications. We present a case study audit from DARPA's Space/Time Analysis for Cybersecurity (STAC) program to illustrate our approach.

The second class of vulnerabilities is Memory Leaks. Although the description of the Memory Leak (ML) problem is known, a proof of the correctness of the verification is needed to establish trust in the results. We present an approach inspired by the works of Alan Perlis to compute evidence of the verification which can be scrutinized by a human to prove the correctness of the verification. We present a novel abstraction, the Evidence Graph, that succinctly captures the verification evidence and show how to compute the evidence. We evaluate our approach against ML instances in the Linux kernel and report improvement over the state-of-the-art results. We also present two case studies to illustrate how the Evidence Graph can be used to prove the correctness of the verification.

Fri May 01 00:00:00 UTC 2020