Experimental and Theoretical Study of Oxygen Insertion into Trialkylsilanes by Methyltrioxorhenium Catalyst

Thumbnail Image
Supplemental Files
Tan, Haisong
Yoshikawa, Akihiko
Espenson, James
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

The Department of Chemistry was founded in 1880.

Dates of Existence

Related Units

Journal Issue
Is Version Of

Among the reactions of hydrogen peroxide that are catalyzed by methyltrioxorhenium, the oxidation of alkylsilanes is unique. It is not a reaction in which an oxygen atom is added to a substrate, but one featuring a net insertion, R3Si−H + H2O2 → R3Si−OH + H2O. Kinetics studies were carried out on 10 compounds. Rate constant were determined for the bimolecular reaction of the silane with the peroxo compound CH3Re(O)(η2-O2)2(H2O). The variation of rate constant with the alkyl groups R follows two trends:  the values of log(k) are linear functions of (a) the stretching frequency of the Si−H group and (b) the total Taft constant for these substituents. The reactions of (n-Bu)3Si−H and (n-Bu)3Si−D exhibit a kinetic isotope effect of 2.1 at 0 °C. From these data, a model for the transition state was formulated in which O−H and Si−O bond making accompany Si−H bond breaking. Quantum mechanical calculations have been carried out on the gas-phase reaction between Et3SiH and CH3Re(O)2(η2-O2). These results support this structure, calculating a structure and energy that are in agreement. The theoretical activation energy is 28.5 kcal mol-1, twice the experimental value in aqueous acetonitrile, 12.4 kcal mol-1. The difference can be attributed to the solvation of the polar transition state in this medium.


Reprinted (adapted) with permission from Organometallics 18 (1999): 4753, doi:10.1021/om990579d. Copyright 1999 American Chemical Society.

Subject Categories
Fri Jan 01 00:00:00 UTC 1999