Ab Initio Study of Molecular Interactions in Cellulose Iα

dc.contributor.author Windus, Theresa
dc.contributor.author Gordon, Mark
dc.contributor.author Lamm, Monica
dc.contributor.author Cheng, Xiaolin
dc.contributor.author Smith, Jeremy
dc.contributor.author Baluyut, John
dc.contributor.author Kholod, Yana
dc.contributor.author Gordon, Mark
dc.contributor.author Windus, Theresa
dc.contributor.department Chemical and Biological Engineering
dc.date 2018-02-15T18:34:11.000
dc.date.accessioned 2020-06-30T01:08:18Z
dc.date.available 2020-06-30T01:08:18Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2013
dc.date.embargo 2015-01-21
dc.date.issued 2013-01-01
dc.description.abstract <p>Biomass recalcitrance, the resistance of cellulosic biomass to degradation, is due in part to the stability of the hydrogen bond network and stacking forces between the polysaccharide chains in cellulose microfibers. The fragment molecular orbital (FMO) method at the correlated Møller-Plesset second order perturbation level of theory was used on a model of the crystalline cellulose Iα core with a total of 144 glucose units. These computations show that the intersheet chain interactions are stronger than the intrasheet chain interactions for the crystalline structure, while they are more similar to each other for a relaxed structure. An FMO chain pair interaction energy decomposition analysis for both the crystal and relaxed structures reveals an intricate interplay between electrostatic, dispersion, charge transfer, and exchange repulsion effects. The role of the primary alcohol groups in stabilizing the interchain hydrogen bond network in the inner sheet of the crystal and relaxed structures of cellulose Iα, where edge effects are absent, was analyzed. The maximum attractive intrasheet interaction is observed for the GT-TG residue pair with one intrasheet hydrogen bond, suggesting that the relative orientation of the residues is as important as the hydrogen bond network in strengthening the interaction between the residues.</p>
dc.description.comments <p>Reprinted (adapted) with permission from <em>Journal of Physical Chemistry B</em>, 117 (2013): 10430, doi: <a href="http://dx.doi.org/10.1021/jp406266u" target="_blank">10.1021/jp406266u</a>. Copyright 2013 American Chemical Society.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/cbe_pubs/190/
dc.identifier.articleid 1189
dc.identifier.contextkey 6548359
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath cbe_pubs/190
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/13280
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/cbe_pubs/190/0-2013_LammMH_AbInitioStudy.html|||Fri Jan 14 21:51:13 UTC 2022
dc.source.bitstream archive/lib.dr.iastate.edu/cbe_pubs/190/2013_LammMH_AbInitioStudy.pdf|||Fri Jan 14 21:51:15 UTC 2022
dc.source.uri 10.1021/jp406266u
dc.subject.disciplines Biochemical and Biomolecular Engineering
dc.subject.disciplines Biophysics
dc.subject.disciplines Chemical Engineering
dc.subject.disciplines Chemistry
dc.subject.disciplines Molecular Biology
dc.subject.keywords biomass recalcitrances
dc.subject.keywords crystalline cellulose
dc.subject.keywords fragment molecular orbital methods
dc.subject.keywords hydrogen bond networks
dc.subject.keywords interchain hydrogen bonds
dc.subject.keywords pair interaction energies
dc.subject.keywords second order perturbation
dc.subject.keywords molecular orbitals
dc.subject.keywords perturbation techniques
dc.subject.keywords thermodynamics
dc.title Ab Initio Study of Molecular Interactions in Cellulose Iα
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 97c1485c-99ca-4fbe-969a-e970c6251814
relation.isAuthorOfPublication 1a5927c0-5a5f-440e-86e0-9da8dc6afda0
relation.isOrgUnitOfPublication 86545861-382c-4c15-8c52-eb8e9afe6b75
File
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2013_LammMH_AbInitioStudy.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
0-2013_LammMH_AbInitioStudy.html
Size:
16.98 KB
Format:
Hypertext Markup Language
Description:
Collections