Mechanisms and impact of alternative transposition-induced segmental duplications

Thumbnail Image
Date
2015-01-01
Authors
Zuo, Tao
Major Professor
Advisor
Thomas Peterson
Dan Nettleton
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

History
The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Segmental duplications are prevalent in both plant and animal genomes, and have played important roles in genome evolution. The focus of my project is to understand the transposition-mediated mechanisms that lead to the formation of segmental duplications, and the immediate impact of recently generated large (up to 14.6 Mb) tandem duplications in maize. We applied a variety of genetic, molecular, statistical and bioinformatics approaches, including genetic screening, PCR, Southern blotting, qRT-PCR, microarray, mRNA-sequencing, small RNA-sequencing, and a self-developed program (STRAND: Search for Transposon-Induced Tandem Direct Duplications) to study these questions. We discovered new genome rearrangement mechanisms, including transposition of paired DNA transposon termini that can generate tandem direct duplications (TDD) and novel structures termed Composite Insertions. Genomic study revealed that these mechanisms have played an important role in generating TDD in 8 of 22 examined plant genomes. We also found a significant dosage-dependent effect of a 14.6 Mb duplication on phenotypic variation, and expression of mRNA and small RNA transcripts. This work expands our current knowledge of how DNA transposons contribute to rapid genome expansion, extends our understanding of the significance of DNA transposons in altering genome structure, and provides new insight into the transcriptional expression and phenotypic effect of a specific and recent maize duplication.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015