Note on von Neumann and Rényi Entropies of a Graph

dc.contributor.author Dairyko, Michael
dc.contributor.author Hogben, Leslie
dc.contributor.author Lin, Jephian
dc.contributor.author Hogben, Leslie
dc.contributor.author Lockhart, Joshua
dc.contributor.author Roberson, David
dc.contributor.author Severini, Simone
dc.contributor.author Young, Michael
dc.contributor.department Electrical and Computer Engineering
dc.contributor.department Mathematics
dc.date 2018-02-05T17:34:52.000
dc.date.accessioned 2020-06-30T06:00:49Z
dc.date.available 2020-06-30T06:00:49Z
dc.date.copyright Sun Jan 01 00:00:00 UTC 2017
dc.date.embargo 2018-05-15
dc.date.issued 2017-05-15
dc.description.abstract <p>We conjecture that all connected graphs of order n have von Neumann entropy at least as great as the star K1;n1 and prove this for almost all graphs of order n. We show that connected graphs of order n have Renyi 2-entropy at least as great as K1;n1 and for > 1, Kn maximizes Renyi -entropy over graphs of order n. We show that adding an edge to a graph can lower its von Neumann entropy.</p>
dc.description.comments <p>This is a manuscript of an article published as Dairyko, Michael, Leslie Hogben, Jephian C-H. Lin, Joshua Lockhart, David Roberson, Simone Severini, and Michael Young. "Note on von Neumann and Rényi entropies of a graph." <em>Linear Algebra and its Applications</em> 521 (2017): 240-253. DOI: <a href="http://dx.doi.org/10.1016/j.laa.2017.01.037" target="_blank">10.1016/j.laa.2017.01.037</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/63/
dc.identifier.articleid 1057
dc.identifier.contextkey 9861096
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/63
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/54660
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/63/2017_Hogben_NoteVonNeuman.pdf|||Sat Jan 15 01:20:08 UTC 2022
dc.source.uri 10.1016/j.laa.2017.01.037
dc.subject.disciplines Algebra
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.keywords entropy
dc.subject.keywords quantum
dc.subject.keywords Laplacian
dc.subject.keywords graph
dc.subject.keywords matrix
dc.title Note on von Neumann and Rényi Entropies of a Graph
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 0131698a-00df-41ad-8919-35fb630b282b
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
File
Original bundle
Now showing 1 - 1 of 1
Name:
2017_Hogben_NoteVonNeuman.pdf
Size:
412.03 KB
Format:
Adobe Portable Document Format
Description:
Collections