Note on von Neumann and Rényi Entropies of a Graph Dairyko, Michael Hogben, Leslie Lin, Jephian Hogben, Leslie Lockhart, Joshua Roberson, David Severini, Simone Young, Michael
dc.contributor.department Electrical and Computer Engineering
dc.contributor.department Mathematics 2018-02-05T17:34:52.000 2020-06-30T06:00:49Z 2020-06-30T06:00:49Z Sun Jan 01 00:00:00 UTC 2017 2018-05-15 2017-05-15
dc.description.abstract <p>We conjecture that all connected graphs of order n have von Neumann entropy at least as great as the star K1;n1 and prove this for almost all graphs of order n. We show that connected graphs of order n have Renyi 2-entropy at least as great as K1;n1 and for > 1, Kn maximizes Renyi -entropy over graphs of order n. We show that adding an edge to a graph can lower its von Neumann entropy.</p>
dc.description.comments <p>This is a manuscript of an article published as Dairyko, Michael, Leslie Hogben, Jephian C-H. Lin, Joshua Lockhart, David Roberson, Simone Severini, and Michael Young. "Note on von Neumann and Rényi entropies of a graph." <em>Linear Algebra and its Applications</em> 521 (2017): 240-253. DOI: <a href="" target="_blank">10.1016/j.laa.2017.01.037</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1057
dc.identifier.contextkey 9861096
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/63
dc.language.iso en
dc.source.bitstream archive/|||Sat Jan 15 01:20:08 UTC 2022
dc.source.uri 10.1016/j.laa.2017.01.037
dc.subject.disciplines Algebra
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.subject.keywords entropy
dc.subject.keywords quantum
dc.subject.keywords Laplacian
dc.subject.keywords graph
dc.subject.keywords matrix
dc.title Note on von Neumann and Rényi Entropies of a Graph
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 0131698a-00df-41ad-8919-35fb630b282b
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
Original bundle
Now showing 1 - 1 of 1
412.03 KB
Adobe Portable Document Format