Impact of hydraulic residence time on nitrate removal in pilot-scale woodchip bioreactors

Thumbnail Image
Date
2019-05-01
Authors
Martin, E. A.
Davis, Morgan
Moorman, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Isenhart, Thomas
Professor
Person
Soupir, Michelle
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Natural Resource Ecology and Management
The Department of Natural Resource Ecology and Management is dedicated to the understanding, effective management, and sustainable use of our renewable natural resources through the land-grant missions of teaching, research, and extension.
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Organizational Unit
Iowa Nutrient Research Center
The Iowa Nutrient Research Center was established to pursue science-based approaches to evaluating the performance of current and emerging nutrient management practices and providing recommendations on practice implementation and development. Publications in this digital repository are products of INRC-funded research. The INRC is headquartered at Iowa State University and operates in collaboration with the University of Iowa and the University of Northern Iowa. Additional project information is available at: https://www.cals.iastate.edu/inrc/
Journal Issue
Is Version Of
Versions
Series
Abstract

Nitrate (NO3−N) export from row crop agricultural systems with subsurface tile drainage continues to be a major water quality concern. Woodchip bioreactors are an effective edge-of-field practice designed to remove NO3−N from tile drainage. The NO3−N removal rate of woodchip bioreactors can be impacted by several factors, including hydraulic residence time(HRT). This study examined the impact of three HRTs, 2 h, 8 h, and 16 h, on NO3−N removal in a set of nine pilot-scale woodchip bioreactors in Central Iowa. NO3−N concentration reduction from the inlet to the outlet was significantly different for all HRTs (p < 0.05). The 16 h HRT removed the most NO3−N by concentration (7.5 mg L−1) and had the highest removal efficiency at 53.8%. The 8 h HRT removed an average of 5.5 mg L−1 NO3−N with a removal efficiency of 32.1%. The 2 h HRT removed an average of 1.3 mg L−1 NO3−N with a removal efficiency of 9.0%. The 2 h HRT had the highest NO3−N mass removal rate (MRR) at 9.0 g m−3 day−1, followed by the 8 h HRT at 8.5 g m−3 day−1, and the 16 h HRT at 7.4 g m−3 day−1, all of which were statistically different (p < 0.05). Significant explanatory variables for removal efficiency were HRT (p < 0.001) and influent NO3−N concentration (p < 0.001), (R2 = 0.80), with HRT accounting for 93% contribution. When paired with results from a companion study, the ideal HRT for the bioreactors was 8 h to achieve maximum NO3−N removal while reducing the impact from greenhouse gas emissions.

Comments

This article is published as Martin, E. A., M. P. Davis, T. B. Moorman, T. M. Isenhart, and M. L. Soupir. "Impact of hydraulic residence time on nitrate removal in pilot-scale woodchip bioreactors." Journal of Environmental Management 237 (2019): 424-432. DOI: 10.1016/j.jenvman.2019.01.025.

Description
Keywords
Citation
DOI
Copyright
Collections