Spinal muscular atrophy: An update on therapeutic progress

Thumbnail Image
Date
2013-12-01
Authors
Seo, Joonbae
Howell, Matthew
Singh, Natalia
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Singh, Ravindra
Professor
Research Projects
Organizational Units
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

History
The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence
1999–present

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Humans have two nearly identical copies of survival motor neuron gene: SMN1 and SMN2. Deletion or mutation of SMN1 combined with the inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA affects 1 in ~ 6000 live births, a frequency much higher than in several genetic diseases. The major known defect of SMN2 is the predominant exon 7 skipping that leads to production of a truncated protein (SMNΔ7), which is unstable. Therefore, SMA has emerged as a model genetic disorder in which almost the entire disease population could be linked to the aberrant splicing of a single exon (i.e. SMN2 exon 7). Diverse treatment strategies aimed at improving the function of SMN2 have been envisioned. These strategies include, but are not limited to, manipulation of transcription, correction of aberrant splicing and stabilization of mRNA, SMN and SMNΔ7. This review summarizes up to date progress and promise of various in vivo studies reported for the treatment of SMA.

Comments

This is a manuscript of an article published as Seo, Joonbae, Matthew D. Howell, Natalia N. Singh, and Ravindra N. Singh. "Spinal muscular atrophy: an update on therapeutic progress." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1832, no. 12 (2013): 2180-2190. DOI: 10.1016/j.bbadis.2013.08.005. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections