Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn

Thumbnail Image
Hoffman, P.
Esser, N.
Shaver, R.
Coblentz, W.
Scott, Marvin
Bodnar, A.
Schmidt, R.
Charley, R.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Scott, M. Paul
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of

The fates of hydrophobic zein proteins, which encapsulate corn starch to create vitreous endosperm, have not been investigated in high-moisture corn (HMC). To assess influences of ensiling time and inoculation on zein proteins in HMC, quadruplicate samples of 2 random corn hybrids (A and B), containing 25.7 and 29.3% moisture, were ground, inoculated with (I) or without 600,000 cfu/g of Lactobacillus buchneri 40788 (Lallemand Animal Nutrition, Milwaukee, WI), and ensiled for 0, 15, 30, 60, 120, and 240 d. Nutrient composition [crude protein (CP), starch, acid detergent fiber, and neutral detergent fiber], fermentation (pH, lactate, and acetate), and protein degradation markers (buffer-soluble CP, isopropanol-soluble CP, and NH3-N) were evaluated. At 0 and 240 d, α, γ, δ, and β zein subunits were profiled using HPLC. Data were evaluated as a split-split plot using the PROC MIXED procedures of SAS. Ensiling time and inoculation decreased pH, and altered lactate and acetate contents of HMC. Lactate and acetate contents of A, AI, B, and BI at 240 d were 0.40, 0.32, 1.11, 0.73, and 0, 0.35, 0.30, and 0.87% of DM, respectively. Buffer-soluble CP in HMC increased from 1.5 to 2.0% of DM at 0 d to >4.0% of DM at 240 d. Inoculation had no effect on buffer-soluble CP but increased NH3-N content of HMC. Corn A contained more isopropanol-soluble CP than did corn B and peak areas for 6 α, and all γ and δ zein regions were greater for corn A. Ensiling (0 vs. 240 d) decreased all zein subunits with the exception of 2 α and 1 δ subunit. Ensiling decreased (42.2–73.2%) γ zeins, which are primarily responsible for cross-linking in the starch-protein matrix. Despite altering lactate and acetate contents, inoculation had no effect on degrading hydrophobic zein proteins in HMC. Data suggest that hydrophobic zein proteins in the starch-protein matrix of HMC are degraded by proteolytic activity over an extended ensiling time.


This article is from Journal of Dairy Science 94 (2011): 2465, doi: 10.3168/jds.2010-3562.