Coloring problems in graph theory
dc.contributor.advisor | Berard Lidicky | |
dc.contributor.advisor | Steve Butler | |
dc.contributor.author | Moss, Kevin | |
dc.contributor.department | Mathematics | |
dc.date | 2018-08-11T06:22:00.000 | |
dc.date.accessioned | 2020-06-30T03:03:30Z | |
dc.date.available | 2020-06-30T03:03:30Z | |
dc.date.copyright | Sun Jan 01 00:00:00 UTC 2017 | |
dc.date.embargo | 2001-01-01 | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | <p>We consider two branches of coloring problems for graphs: list coloring and packing coloring. We introduce a new variation to list coloring which we call choosability with union separation: For a graph G, a list assignment L to the vertices of G is a (k,k+t)-list assignment if every vertex is assigned a list of size at least k and the union of the lists of each pair of adjacent vertices is at least k+t. We explore this new variation and offer comparative results to choosability with intersection separation, a variation that has been studied previously.</p> <p>Regarding packing colorings, we consider infinite lattice graphs and provide bounds to their packing chromatic numbers. We also provide algorithms for coloring these graphs. The lattices we color include two-layer hexagonal lattices as well as the truncated square lattice, a 3-regular lattice whose faces have length 4 and 8.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/etd/15383/ | |
dc.identifier.articleid | 6390 | |
dc.identifier.contextkey | 11051413 | |
dc.identifier.doi | https://doi.org/10.31274/etd-180810-5276 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | etd/15383 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/29566 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/etd/15383/0-tiling205D1536x1152.txt|||Fri Jan 14 20:40:03 UTC 2022 | |
dc.source.bitstream | archive/lib.dr.iastate.edu/etd/15383/Moss_iastate_0097E_16386.pdf|||Fri Jan 14 20:40:04 UTC 2022 | |
dc.subject.disciplines | Computer Sciences | |
dc.subject.disciplines | Mathematics | |
dc.subject.keywords | Choosability | |
dc.subject.keywords | Combinatorics | |
dc.subject.keywords | Graph Coloring | |
dc.subject.keywords | Graph Theory | |
dc.subject.keywords | Packing Coloring | |
dc.supplemental.bitstream | tiling205D1536x1152.txt | |
dc.title | Coloring problems in graph theory | |
dc.type | dissertation | en_US |
dc.type.genre | dissertation | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 | |
thesis.degree.discipline | Mathematics | |
thesis.degree.level | dissertation | |
thesis.degree.name | Doctor of Philosophy |