The biogeochemistry of ferruginous lakes and past ferruginous oceans

File
2020_Swanner_BiogeochemistryFerruginousManuscript.pdf (14.88 MB)

File Embargoed Until: (2022-11-04)
Date
2020-11-04
Authors
Swanner, Elizabeth
Swanner, Elizabeth
Lambrecht, Nick
Wittkop, Chad
Harding, Chris
Katsev, Sergei
Torgeson, Joshua
Poulton, Simon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Geological and Atmospheric Sciences
Abstract

Anoxic and iron-rich (ferruginous) conditions prevailed in the ocean under the low-oxygen atmosphere that occurred through most of the Archean Eon. While euxinic conditions (i.e. anoxic and hydrogen sulfide-rich waters) became more common in the Proterozoic, ferruginous conditions persisted in deep waters. Ferruginous ocean regions would have been a major biosphere and Earth surface reservoir through which elements passed through as part of their global biogeochemical cycles. Understanding key biological events, such as the rise of oxygen in the atmosphere, or even the transitions from ferruginous to euxinic or oxic conditions, requires understanding the biogeochemical processes occurring within ferruginous oceans, and their indicators in the rock record. Important analogs for transitions between ferruginous and oxic or euxinic conditions are paleoferruginous lakes; their sediments commonly host siderite and Ca carbonates, which are important Precambrian records of the carbon cycling. Lakes that were ferruginous in the past, or euxinic lakes with cryptic iron cycling may also help understand transitions between ferruginous and euxinic conditions in shallow and mid-depth oceanic waters during the Proterozoic. Modern ferruginous meromictic lakes, which host diverse anaerobic microbial communities, are increasingly utilized as biogeochemical analogues for ancient ferruginous oceans. Such lakes are believed to be rare, but regional and geological factors indicate they may be more common than previously thought. While physical mixing processes in lakes and oceans are notably different, many chemical and biological processes are similar. The diversity of sizes, stratifications, and water chemistries in ferruginous lakes thus can be leveraged to explore biogeochemical controls in a range of marine systems: near-shore, off shore, silled basins, or those dominated by terrestrial or hydrothermal element sources. Ferruginous systems, both extant and extinct, lacustrine and marine, host a continuum of biogeochemical processes that highlight the important role of iron in the evolution of Earth’s surface environment.

Comments

This is a manuscript of an article published as Swanner, Elizabeth D., Nick Lambrecht, Chad Wittkop, Chris Harding, Sergei Katsev, Joshua Torgeson, and Simon W. Poulton. "The biogeochemistry of ferruginous lakes and past ferruginous oceans." Earth-Science Reviews (2020): 103430. Posted with permission.

Description
Keywords
Citation
DOI
Collections