Energy use in pig production: An examination of current Iowa Systems

Thumbnail Image
Lammers, Peter
Kenealy, M. Douglas
Kliebenstein, James
Honeyman, Mark
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Harmon, Jay
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of

This paper compares energy use for different pig production systems in Iowa, a leader in US swine production. Pig production systems include not only the growth and performance of the pigs, but also the supporting infrastructure of pig production. This supporting infrastructure includes swine housing, facility management, feedstuff provision, swine diets, and manure management. Six different facility type × diet formulation × cropping sequence scenarios were modeled and compared. The baseline system examined produces 15,600 pigs annually using confinement facilities and a corn-soybean cropping sequence. Diet formulations for the baseline system were corn-soybean meal diets that included the synthetic AA L-lysine and exogenous phytase. The baseline system represents the majority of current US pork production in the Upper Midwest, where most US swine are produced. This system was found to require 744.6 MJ per 136-kg market pig. An alternative system that uses bedded hoop barns for grow-finish pigs and gestating sows would require 3% less (720.8 MJ) energy per 136-kg market pig. When swine production systems were assessed, diet type and feed ingredient processing were the major influences on energy use, accounting for 61 and 79% of total energy in conventional and hoop barn-based systems, respectively. Improving feed efficiency and better matching the diet formulation with the thermal environment and genetic potential are thus key aspects of reducing energy use by pig production, particularly in a hoop barn-based system. The most energy-intensive aspect of provisioning pig feed is the production of synthetic N for crop production; thus, effectively recycling manure nutrients to cropland is another important avenue for future research. Almost 25% of energy use by a conventional farrow-to-finish pig production system is attributable to operation of the swine buildings. Developing strategies to minimize energy use for heating and ventilation of swine buildings while maintaining pig comfort and performance is a third critical area for future research. The hoop barn-based alternative uses 64% less energy to operate buildings but requires bedding and 2.4% more feed. Current Iowa pig production systems use energy differently but result in similar total energy use. Compared with 1975, current farrow-to-finish systems in Iowa require 80% less energy to produce live market pigs.


This article is from Journal of Animal Science 90, no. 3 (March 2012): 1056–1068. Posted with permission.

Sun Jan 01 00:00:00 UTC 2012