Using first-principles calculations to screen for fragile magnetism: Case study of LaCrGe 3 and LaCrSb 3

Date
2018-05-01
Authors
Nguyen, Manh Cuong
Taufour, Valentin
Bud’ko, Sergey
Canfield, Paul
Antropov, Vladimir
Wang, Cai-Zhuang
Ho, Kai-Ming
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Abstract

In this paper, we present a coupled experimental/theoretical investigation of pressure effect on the ferromagnetism of LaCrGe3 and LaCrSb3 compounds. The magnetic, electronic, elastic, and mechanical properties of LaCrGe3 and LaCrSb3 at ambient condition are studied by first-principles density-functional theory calculations. The pressure dependences of the magnetic properties of LaCrGe3 and LaCrSb3 are also investigated. The ferromagnetism in LaCrGe3 is rather fragile, with a ferro- to paramagnetic transition at a relatively small pressure (around 7 GPa from our calculations, and 2 GPa in experiments). The key parameter controlling the magnetic properties of LaCrGe3 is found to be the proximity of the peak of Cr density of states to the Fermi level, a proximity that is strongly correlated with the distance between Cr atoms along the c axis, suggesting that there would be a simple way to suppress magnetism in systems with one-dimensional arrangement of magnetic atoms. By contrast, the ferromagnetism in LaCrSb3 is not fragile. Our theoretical results are consistent with our experimental results and demonstrate the feasibility of using first-principles calculations to aid experimental explorations in screening for materials with fragile magnetism.

Description
Keywords
Citation
DOI
Collections