Multiobjective Optimal Controlled Variable Selection for a Gas Turbine–Solid Oxide Fuel Cell System Using a Multiagent Optimization Platform

Thumbnail Image
Date
2020-11-02
Authors
Bankole, Temitayo
Bhattacharyya, Debangsu
Pezzini, Paolo
Gebreslassie, Berhane
Harun, Nor
Tucker, David
Diwekar, Urmila
Bryden, Kenneth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMechanical Engineering
Abstract

Hybrid gas turbine–fuel cell systems have immense potential for high efficiency in electrical power generation with cleaner emissions compared with fossil-fueled power generation. A systematic controlled variable (CV) selection method is deployed for a hybrid gas turbine–fuel cell system in the HyPer (hybrid performance) facility at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) for maximizing its economic and control performance. A three-stage approach is used for the CV selection comprising a priori analysis, multiobjective optimization, and a posteriori analysis. The a priori analysis helps to screen off several candidate CVs, thus reducing the size of the combinatorial optimization problem for multiobjective CV selection. For optimal CV selection, a transfer function model of the HyPer facility is identified. By considering several candidate models, the final transfer function model is selected using Akaike’s Final Prediction Error criterion. Experimental data from the HyPer facility are used to estimate the noise in the measurement data. For solving the combinatorial multiobjective optimization problem for CV selection, a multiagent optimization platform comprising simulated annealing, genetic algorithm, and efficient ant colony optimization algorithms is used. Pareto-optimal CV sets exhibit a high trade-off between the economic and control objective. The a posteriori analysis is undertaken for several top Pareto-optimal CV sets. An optimal CV set is selected that shows the best compromise between process economics and controllability under both nominal and off-design conditions.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections