An Artificial-Neural-Network-Based Model for Real-Time Dispatching of Electric Autonomous Taxis
An Artificial-Neural-Network-Based Model for Real-Time Dispatching of Electric Autonomous Taxis
dc.contributor.author | Hu, Liang | |
dc.contributor.author | Dong, Jing | |
dc.contributor.author | Dong, Jing | |
dc.contributor.department | Civil, Construction and Environmental Engineering | |
dc.date | 2021-05-09T02:57:45.000 | |
dc.date.accessioned | 2021-08-14T02:55:01Z | |
dc.date.available | 2021-08-14T02:55:01Z | |
dc.date.copyright | Wed Jan 01 00:00:00 UTC 2020 | |
dc.date.issued | 2020-10-22 | |
dc.description.abstract | <p>This paper presents a real-time dispatching model for electric autonomous vehicle (EAV) taxis that combines mathematical programming and machine learning. The EAV taxi dispatching problem is formulated and solved as an integer linear program that maximizes the total reward for serving customers. The optimal dispatch solutions are generated by simulating electric autonomous taxis that are dispatched by the optimization model. The artificial-neural-network-(ANN)-based model was trained using the optimization model's dispatch solutions to learn the optimal dispatch strategies. Although the dispatch decisions made by the ANN-based model are not optimal, the system's performance is very close to the optimization dispatch model in terms of customer service and taxis' operational efficiency. In addition, the ANN-based dispatch model runs much faster. By comparing with current taxis, it was found that the EAV taxis dispatched by our ANN-based model can improve operational efficiency by reducing empty travel distance. EAV taxis can also reduce fleet size by 15% while maintaining a comparable level of service with the current taxi fleet.</p> | |
dc.description.comments | <p>This is a manuscript of an article published as Hu, Liang, and Jing Dong. "An Artificial-Neural-Network-Based Model for Real-Time Dispatching of Electric Autonomous Taxis." <em>IEEE Transactions on Intelligent Transportation Systems</em> (2020). DOI: <a href="https://doi.org/10.1109/TITS.2020.3029141" target="_blank">10.1109/TITS.2020.3029141</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/ccee_pubs/291/ | |
dc.identifier.articleid | 1295 | |
dc.identifier.contextkey | 22852927 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | ccee_pubs/291 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/JvNVQ1mv | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/ccee_pubs/291/2020_DongJing_ArtificialNeural.pdf|||Fri Jan 14 23:14:22 UTC 2022 | |
dc.source.uri | 10.1109/TITS.2020.3029141 | |
dc.subject.disciplines | Transportation Engineering | |
dc.subject.keywords | Artificial neural network | |
dc.subject.keywords | electric and autonomous vehicle | |
dc.subject.keywords | integer linear program | |
dc.subject.keywords | simulation | |
dc.subject.keywords | taxi dispatch | |
dc.title | An Artificial-Neural-Network-Based Model for Real-Time Dispatching of Electric Autonomous Taxis | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 02eacfea-376d-45b0-a048-1b6d00cfbf26 | |
relation.isOrgUnitOfPublication | 933e9c94-323c-4da9-9e8e-861692825f91 |
File
Original bundle
1 - 1 of 1
- Name:
- 2020_DongJing_ArtificialNeural.pdf
- Size:
- 1.84 MB
- Format:
- Adobe Portable Document Format
- Description: