Reduction of gaseous emissions from swine manure: effect of biochar dose and reapplication

Thumbnail Image
Banik, Chumki
Ma, Hantian
Lee, Myeongseong
O'Brien, Samuel
Li, Peiyang
Andersen, Daniel
Białowiec, Andrzej
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Food Science and Human NutritionMechanical EngineeringCivil, Construction and Environmental EngineeringChemical and Biological EngineeringAgricultural and Biosystems EngineeringEnvironmental ScienceToxicologyBioeconomy Institute (BEI)

The rural communities are affected by gaseous emissions from intensive livestock production. Practical mitigation technologies are needed to minimize emissions from stored manure and improve air quality inside barns. In our previous research, the one-time surficial application of biochar to swine manure significantly reduced emissions of NH3 and phenol. We observed that the mitigation effect decreased with time during the 30-day trials. In this research, we hypothesized that bi-weekly reapplication of biochar could improve the mitigation effect on a wider range of odorous compounds using larger scale and longer trials. The objective was to evaluate the effectiveness of biochar dose and reapplication on mitigation of targeted gases (NH3, odorous VOCs, odor, GHGs) from stored swine manure on a pilot-scale setup over 8-weeks. The bi-weekly reapplication of the lower biochar dose (2 kg/m2) showed much higher significant percent reductions of emissions for NH3 (33% without & 53% with reapplication) and skatole (42% without & 80% with reapplication), respectively. In addition, the reapplication resulted in the emergence of statistical significance to the mitigation effect for all other targeted VOCs. Specifically, for indole, the % reduction improved from 38% (p=0.47, without reapplication) to 78% (p=0.018, with reapplication). For phenol, the % reduction improved from 28% (p=0.71, without reapplication) to 89% (p=0.005, with reapplication). For p-cresol, the % reduction improved from 31% (p=0.86, without reapplication) to 74% (p=0.028, with reapplication). For 4-ethyl phenol, the percent emissions reduction improved from 66% (p=0.44, without reapplication) to 87% (p=0.007, with reapplication). The one-time 2 kg/m2 and 4 kg/m2 treatments showed similar effectiveness in mitigating all targeted gases, and no statistical difference was found between the dosages. The one-time treatments showed significant % reductions of 33% & 42% and 25% & 48% for NH3 and skatole, respectively. The practical significance is that the higher (one-time) biochar dose may not necessarily result in improved performance over the 8-week manure storage, but the bi-weekly reapplication showed significant improvement in mitigating NH3 and odorous VOCs. The lower dosages and the frequency of reapplication on the larger-scale should be explored to optimize biochar treatment and bring it closer to on-farm trials


This conference presentation is published as Chen, Baitong, Jacek A. Koziel, Chumki Banik, Hantian Ma, Myeongseong Lee, Samuel C. O’Brien, Peiyang Li, Daniel S. Andersen, Andrzej Bialowiec, and Robert C. Brown. "Reduction of gaseous emissions from swine manure: effect of biochar dose and reapplication." ASABE Paper No. 2100086. ASABE Annual International Meeting, July 12-16, 2021. DOI: 10.13031/aim.202100086. Posted with permission.

Fri Jan 01 00:00:00 UTC 2021