Shape- and Orientation-Dependent Scattering of Isolated Gold Nanostructures Using Polarized Dark-Field Microscopy

Thumbnail Image
Islam, Md Monirul
Hossen, Md Mir
Koschny, Thomas
Hillier, Andrew
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

We demonstrate a simple and robust method for measuring the shape- and orientation-dependent optical scattering of various plasmonic nanostructures adsorbed onto a solid surface using polarized dark-field microscopy. By analyzing the dark-field scattering images of gold nanostructures using grazing incidence polarized light with a bench-top microscope, we are able to correlate optical scattering from the individual nanostructures with their shape and orientation. Depending on the size, shape, and orientation of the plasmonic nanostructures, they exhibit characteristic angle- and polarization-dependent scattering signals. Extracting the red, green, and blue channels of the scattering signals from a color-imaging detector as a function of azimuthal angle provides a polar plot of color intensity values that is characteristic of the underlying nanostructure. Examples are presented for various nanostructures, including spherical nanoparticles, nanotriangles, and nanorods. Experimental results are complemented by numerical calculations of the scattering spectra of representative model nanostructures. We demonstrate that the polarization- and orientation-dependent scattering behavior is a consequence of various localized surface plasmon modes existing in the nanostructures and can be used to verify the shape of individual objects as well as quickly identify the orientation of numerous objects on a densely populated substrate. We anticipate that this method will provide a rapid and efficient complement to the typical structural analysis of nanoparticles that is achieved by electron microscopy as well as providing a simple method for generating detailed information of the optical scattering of various types of individual plasmonic nanostructures.