Dissection of canopy layer-specific genetic control of leaf angle in Sorghum bicolor by RNA sequencing

Thumbnail Image
Date
2022-02-03
Authors
Natukunda, Martha I.
Mantilla-Perez, Maria B.
Graham, Michelle A.
Liu, Peng
Salas-Fernandez, Maria G.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Abstract
Background Leaf angle is an important plant architecture trait, affecting plant density, light interception efficiency, photosynthetic rate, and yield. The “smart canopy” model proposes more vertical leaves in the top plant layers and more horizontal leaves in the lower canopy, maximizing conversion efficiency and photosynthesis. Sorghum leaf arrangement is opposite to that proposed in the “smart canopy” model, indicating the need for improvement. Although leaf angle quantitative trait loci (QTL) have been previously reported, only the Dwarf3 (Dw3) auxin transporter gene, colocalizing with a major-effect QTL on chromosome 7, has been validated. Additionally, the genetic architecture of leaf angle across canopy layers remains to be elucidated. Results This study characterized the canopy-layer specific transcriptome of five sorghum genotypes using RNA sequencing. A set of 284 differentially expressed genes for at least one layer comparison (FDR < 0.05) co-localized with 69 leaf angle QTL and were consistently identified across genotypes. These genes are involved in transmembrane transport, hormone regulation, oxidation-reduction process, response to stimuli, lipid metabolism, and photosynthesis. The most relevant eleven candidate genes for layer-specific angle modification include those homologous to genes controlling leaf angle in rice and maize or genes associated with cell size/expansion, shape, and cell number. Conclusions Considering the predicted functions of candidate genes, their potential undesirable pleiotropic effects should be further investigated across tissues and developmental stages. Future validation of proposed candidates and exploitation through genetic engineering or gene editing strategies targeted to collar cells will bring researchers closer to the realization of a “smart canopy” sorghum.
Comments
This article is published as Natukunda, M.I., Mantilla-Perez, M.B., Graham, M.A. et al. Dissection of canopy layer-specific genetic control of leaf angle in Sorghum bicolor by RNA sequencing. BMC Genomics 23, 95 (2022). doi:10.1186/s12864-021-08251-4. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Description
Keywords
Citation
DOI
Copyright
Collections