Superelasticity and cryogenic linear shape memory effects of CaFe2As2

dc.contributor.author Goldman, Alan
dc.contributor.author Sypek, John
dc.contributor.author Yu, Hang
dc.contributor.author Dusoe, Keith
dc.contributor.author Canfield, Paul
dc.contributor.author Drachuck, Gil
dc.contributor.author Patel, Hetal
dc.contributor.author Giroux, Amanda
dc.contributor.author Goldman, Alan
dc.contributor.author Kreyssig, Andreas
dc.contributor.author Canfield, Paul
dc.contributor.author Bud’ko, Serguei
dc.contributor.author Weinberger, Christopher
dc.contributor.author Lee, Seok-Woo
dc.contributor.department Ames Laboratory
dc.contributor.department Physics and Astronomy
dc.date 2018-02-19T03:50:35.000
dc.date.accessioned 2020-06-29T23:22:10Z
dc.date.available 2020-06-29T23:22:10Z
dc.date.embargo 2017-11-21
dc.date.issued 2017-10-20
dc.description.abstract <p>Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. However, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. Here, we report a unique shape memory behavior in CaFe2As2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonal phase transformation. Our results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr2Si2-structured intermetallic compounds.</p>
dc.identifier archive/lib.dr.iastate.edu/ameslab_manuscripts/31/
dc.identifier.articleid 1032
dc.identifier.contextkey 11103075
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_manuscripts/31
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/7245
dc.language.iso en
dc.relation.ispartofseries IS-J 9415
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/31/2017_Goldman_SuperelasticityCryogenic.pdf|||Fri Jan 14 23:30:53 UTC 2022
dc.source.uri 10.1038/s41467-017-01275-z
dc.subject.disciplines Condensed Matter Physics
dc.subject.disciplines Engineering Physics
dc.subject.disciplines Materials Science and Engineering
dc.title Superelasticity and cryogenic linear shape memory effects of CaFe2As2
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication c31f41cd-56c9-4b72-a034-c13cd4ec4d43
relation.isAuthorOfPublication c5a8128b-7d98-4b8f-92d7-b1385e345713
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 4a05cd4d-8749-4cff-96b1-32eca381d930
File
Original bundle
Now showing 1 - 1 of 1
Name:
2017_Goldman_SuperelasticityCryogenic.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format
Description:
Collections