Ultrarelativistic quark-nucleus scattering in a light-front Hamiltonian approach

dc.contributor.author Li, Meijian
dc.contributor.author Zhao, Xingbo
dc.contributor.author Maris, Pieter
dc.contributor.author Chen, Guangyao
dc.contributor.author Li, Yang
dc.contributor.author Tuchin, Kirill
dc.contributor.author Vary, James P.
dc.contributor.department Physics and Astronomy
dc.date.accessioned 2023-03-29T23:47:05Z
dc.date.available 2023-03-29T23:47:05Z
dc.date.issued 2020-04-21
dc.description.abstract We investigate the scattering of a quark on a heavy nucleus at high energies using the time-dependent basis light-front quantization (tBLFQ) formalism, which is the first application of the tBLFQ formalism in QCD. We present the real-time evolution of the quark wave function in a strong classical color field of the relativistic nucleus, described as the color glass condensate. The quark and the nucleus color field are simulated in the QCD SU(3) color space. We calculate the total and the differential cross sections, and the quark distribution in coordinate and color spaces using the tBLFQ approach. We recover the eikonal cross sections in the eikonal limit. We find that the differential cross section from the tBLFQ simulation is in agreement with a perturbative calculation at large p⊥, and it deviates from the perturbative calculation at small p⊥ due to higher-order contributions. In particular, we relax the eikonal limit by letting the quark carry realistic finite longitudinal momenta. We study the sub-eikonal effect on the quark through the transverse coordinate distribution of the quark with different longitudinal momentum, and we find the subeikonal effect to be sizable. Our results can significantly reduce the theoretical uncertainties in small p⊥ region which has important implications to the phenomenology of the hadron-nucleus and deep inelastic scattering at high energies.
dc.description.comments This article is published as Li, Meijian, Xingbo Zhao, Pieter Maris, Guangyao Chen, Yang Li, Kirill Tuchin, and James P. Vary. "Ultrarelativistic quark-nucleus scattering in a light-front Hamiltonian approach." Physical Review D 101, no. 7 (2020): 076016. DOI: 10.1103/PhysRevD.101.076016. Copyright 2020 American Physical Society. Posted with permission.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/WwPgBnOz
dc.language.iso en
dc.publisher American Physical Society
dc.source.uri https://doi.org/10.1103/PhysRevD.101.076016 *
dc.subject.disciplines DegreeDisciplines::Physical Sciences and Mathematics::Physics::Elementary Particles and Fields and String Theory
dc.title Ultrarelativistic quark-nucleus scattering in a light-front Hamiltonian approach
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 53237c63-0010-49be-816c-6a1d9dd0e21b
relation.isOrgUnitOfPublication 4a05cd4d-8749-4cff-96b1-32eca381d930
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2020-TuchinKirill-UltrarelativisticQuark.pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format
Description:
Collections