Detecting exploit patterns from network packet streams

Thumbnail Image
Date
2012-01-01
Authors
Lahiri, Bibudh
Major Professor
Advisor
Srikanta Tirthapura
Yong Guan
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Network-based Intrusion Detection Systems (NIDS), e.g., Snort, Bro or NSM, try to detect malicious network activity such as Denial of Service (DoS) attacks and port scans by monitoring network traffic. Research from network traffic measurement has identified various patterns that exploits on today's Internet typically exhibit. However, there has not been any significant attempt, so far, to design algorithms with provable guarantees for detecting exploit patterns from network traffic packets. In this work, we develop and apply data streaming algorithms to detect exploit patterns from network packet streams.

In network intrusion detection, it is necessary to analyze large volumes of data in an online fashion. Our work addresses scalable analysis of data under the following situations. (1) Attack traffic can be stealthy in nature, which means detecting a few covert attackers might call for checking traffic logs of days or even months, (2) Traffic is multidimensional and correlations between multiple dimensions maybe important, and (3) Sometimes traffic from multiple sources may need to be analyzed in a combined manner. Our algorithms offer provable bounds on resource consumption and approximation error. Our theoretical results are supported by experiments over real network traces and synthetic datasets.

Comments
Description
Keywords
Citation
Source
Copyright
Sun Jan 01 00:00:00 UTC 2012