Performance-based design with life-cycle cost assessment for damping systems integrated in wind excited tall buildings

Thumbnail Image
Date
2019-09-15
Authors
Micheli, Laura
Sarkar, Partha
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Alipour, Alice
Associate Professor
Person
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The application of performance-based design (PBD) is gaining increasing interest in the wind engineering community. A popular design approach to minimize wind induced vibrations in flexible civil structures is to size structural stiffness and supplemental damping systems in order to restrict the motion to a given threshold for providing safety and comfort, while ensuring that structural components meet strength requirements. In this paper the PBD paradigm is extended to wind excited tall buildings equipped with motion control systems. The objective is to improve the design of damping systems under different wind events while considering maximum acceleration as performance measure. In addition, since the installation of damping devices implies additional costs (e.g., installation and maintenance costs) while it helps decreasing the costs associated with performance failure, a life-cycle analysis (LCA) is integrated in the PBD. In the LCA framework, the percentage of building occupants affected by discomfort and motion sickness caused by excessive wind-induced vibrations is considered to account for the consequences of different target performance levels. The developed PBD is applied to a 39-story building that has documented issues with excessive vibrations under wind events. The wind load is simulated as a multivariate stochastic process, in the time domain. Two passive vibration mitigation strategies are investigated: viscous and friction dampers, both designed to meet the target performance levels. LCA are conducted for the building equipped with each damper type, and benchmarked against the one without dampers. Results show that the PBD leads to a rational and economically effective approach for the design of the damping systems in wind excited tall buildings.

Comments

This is a manuscript of an article published as Micheli, Laura, Alice Alipour, Simon Laflamme, and Partha Sarkar. "Performance-based design with life-cycle cost assessment for damping systems integrated in wind excited tall buildings." Engineering Structures 195 (2019): 438-451. DOI: 10.1016/j.engstruct.2019.04.009. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections