Bacterial Cross-Contamination in a Veterinary Ophthalmology Setting

Thumbnail Image
Gentile, Dominic
Adiguzel, Mehmet C.
Kenne, Danielle E.
Sahin, Orhan
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Frontiers Media S. A.
Allbaugh, Rachel
Research Projects
Organizational Units
Organizational Unit
Veterinary Clinical Sciences
The mission of the Veterinary Clinical Sciences Department and the Veterinary Medical Center is to be strong academically, to provide outstanding services, and to conduct research in the multiple areas of Veterinary Clinical Sciences. Our goals are to teach students in the multiple disciplines of Veterinary Clinical Sciences, to provide excellent veterinary services to clients, and to generate and disseminate new knowledge in the areas of Veterinary Clinical Sciences. Our objectives are to provide a curriculum in the various aspects of Veterinary Clinical Sciences which ensures students acquire the skills and knowledge to be successful in their chosen careers. We also strive to maintain a caseload of sufficient size and diversity which insures a broad clinical experience for students, residents, and faculty. In addition, we aim to provide clinical veterinary services of the highest standards to animal owners and to referring veterinarians. And finally, we strive to provide an environment and opportunities which foster and encourage the generation and dissemination of new knowledge in many of the disciplines of Veterinary Clinical Sciences.
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
The present study describes the prevalence of bacterial cross-contamination in a veterinary ophthalmology setting, a serious issue that can result in healthcare-associated (or nosocomial) infections among patients and staff. Retrospective (n = 5 patients) and prospective (n = 23 patients) studies evaluated bacterial isolates in companion animals presenting with ulcerative keratitis, sampling the patients' cornea and surrounding examination room, including the environment (exam table, countertop, floor) and ophthalmic equipment (slit lamp, transilluminator, direct ophthalmoscope, indirect headset, tonometer). Results of bacterial culture and antibiotic susceptibility testing were recorded, and degree of genetic relatedness was evaluated in six pairs of isolates (cornea + environment or equipment) using pulse-field gel electrophoresis (PFGE). Overall contamination rate of ophthalmic equipment, environment, and examination rooms (equipment + environment) was 42.9% (15/35 samples), 23.7% (9/38 samples) and 32.9% (24/73 samples), respectively. Methicillin-resistant Staphylococcus pseudintermedius (MRSP), a multi-drug resistant (MDR) pathogen with zoonotic potential, was isolated in 8.2% (6/73) of samples. The patient's cornea was likely the source of cross-contamination in 50% (3/6) of MRSP pairs as evaluated by PFGE; notably, two of the three similar bacterial strains did not have an exact match of their antibiotic susceptibility profiles, highlighting the importance of advanced diagnostics such as PFGE to assess cross-contamination in healthcare facilities. Future work could examine the contamination prevalence of specific equipment or the efficacy of cleaning protocols to mitigate cross-contamination in veterinary practice.
This article is published as Gentile, Dominic, Rachel A. Allbaugh, Mehmet C. Adiguzel, Danielle E. Kenne, Orhan Sahin, and Lionel Sebbag. "Bacterial cross-contamination in a veterinary ophthalmology setting." Frontiers in Veterinary Science 7 (2020): 571503. DOI: 10.3389/fvets.2020.571503. Copyright 2020 Gentile, Allbaugh, Adiguzel, Kenne, Sahin and Sebbag. Attribution 4.0 International (CC BY 4.0). Posted with permission.