Development of topographic maps and rear steering control for an agricultural vehicle through incorporation of posture and attitude measurements

Thumbnail Image
Date
2004-01-01
Authors
Westphalen, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The two articles contained in this work investigate the relationship between an agricultural vehicle's posture and attitude with (a) its surroundings and (b) machine performance. In the first case, a self-propelled agricultural sprayer was equipped with four RTK DGPS receivers and an inertial measurement unit (IMU) to measure vehicle attitude and field elevation as the vehicle was driven across a field. Data was collected in a stop-and-go fashion as well as at three different speeds on a field area with varying topography. Using ordinary kriging, digital elevation models (DEMs) were interpolated from the elevation measurements and elevation plus attitude measurements. The resulting DEMs were compared to each other to evaluate the effect of including attitude measurement on DEM accuracy. At the widest swath width, the DEMs generated with attitude measurements had substantially lower error measures than those DEMs generated without attitude measurements. These results provide evidence that support the feasibility of using vehicle-based measurements collected during typical field operations for accurate DEM development. In the second case, a steering controller was designed and implemented on a self-propelled agricultural sprayer with four-wheel steering (4WS). The goals of this controller were to reduce the off-tracking error of the rear wheels and control turning radius during lateral shifts to reduce chemical application error. The vehicle was driven along marked courses of different shapes to test the steering controller's performance. A computer simulation provided an estimate of chemical application rates across the spray boom during lateral shift maneuvers. During hillside operations, the controller was able to reduce the area damaged by the rear wheels from 107.35 m2 using two-wheel steer (2WS) to 0.32 m2 with Active Rear Steering (ARS) control. During 90-degree turns, the controller reduced the area damaged by rear wheels from 49.34 m2 in 2 WS to 1.15 m2 with ARS. This reduction in rear wheel off-tracking could lead to a reduction in crop damage through turns and during hillside operation, as well as reduced chemical application errors during turns.

Comments
Description
Keywords
Citation
Source
Copyright
Thu Jan 01 00:00:00 UTC 2004