Composition and inclusion of probiotics in broiler diets alter intestinal permeability and spleen immune cell profiles without negatively affecting performance

dc.contributor.author Fries-Craft, Krysten
dc.contributor.author Meyer, Meaghan
dc.contributor.author Bobeck, Elizabeth
dc.contributor.author Fries-Craft, Krysten
dc.contributor.author Bobeck, Elizabeth
dc.contributor.department Animal Science
dc.date 2020-01-02T18:49:10.000
dc.date.accessioned 2020-06-29T23:41:24Z
dc.date.available 2020-06-29T23:41:24Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2019
dc.date.embargo 2020-12-21
dc.date.issued 2019-12-21
dc.description.abstract <p>Probiotic feed additives with potential to enhance performance, health, and immunity have gained considerable popularity in commercial broiler production. The study objectives were to measure broiler performance, gut integrity, and splenic immune cell profiles in birds fed one of 2 probiotics at 2 inclusion levels. Nine hundred and sixty Ross 708 broilers (12/ pen) were randomly assigned to no additive control, 0.05 or 0.10% LactoCare (Lactobacillus reuteri), or 0.05 or 0.10% LactoPlan (Lactobacillus plantarum) dietary treatments for 6 wk. On d27, a 20-pen subset was utilized for a fluorescein isothiocyanate dextran (FITC-d) assay, where half of the pens were subject to a 12-h feed restriction (FR) pre-gavage. Serum collected from blood drawn 1-h post-gavage was analyzed for relative fluorescence of FITC-d absorbed across the intestinal barrier as a gut leakiness indicator. On d42, spleens from 8 birds/ treatment were collected for immune cell profile analysis by multicolor flow cytometry. Although performance outcomes were not affected by dietary treatment, FITC-d absorption post-FR was increased 57% in the 0.05% LactoPlan treatment, and was decreased by 12.6% in the 0.05% LactoCare diet, 12% in the 0.10% LactoCare diet, and 22% in the 0.10% LactoPlan diet compared to the control. This indicates a positive impact in barrier integrity maintenance due to 0.05% and 0.10% LactoCare and 0.10% LactoPlan diet following a challenge. Immune cell profiles varied between the two probiotic compositions, with an approximately 50% reduction in splenic innate immune cells (monocyte/macrophage+) in birds fed LactoPlan (P < 0.0001) and greater overall percentages of CD45+ leukocytes and CD3+ T-cells in birds fed 0.10% LactoCare (P < 0.0001). LactoPlan diets shifted splenic T-cell populations in favor of CD8+ cytotoxic T-cells (TC; P= 0.007), while higher inclusions (0.10%) of either probiotic increased the percentage of activated CD4+ helper T-cells (TH; P < 0.0001). These results indicate that compositionally different probiotics had varying effects on the gut permeability and splenic immune cell profiles in broiler chickens, particularly at higher inclusion rates, but observed changes to underlying physiology did not negatively impact performance outcomes. The ability of a probiotic to alter gut permeability and immune cell profile therefore may depend on the compositional complexity of the product as well as inclusion rate.</p>
dc.description.comments <p>This is a manuscript of an article published as Meyer, Meaghan M., Krysten A. Fries-Craft, and Elizabeth A. Bobeck. "Composition and inclusion of probiotics in broiler diets alter intestinal permeability and spleen immune cell profiles without negatively affecting performance." <em>Journal of Animal Science</em> (2019). doi: <a href="https://doi.org/10.1093/jas/skz383">10.1093/jas/skz383</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ans_pubs/510/
dc.identifier.articleid 1511
dc.identifier.contextkey 16101308
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ans_pubs/510
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/9946
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ans_pubs/510/2020_Bobeck_CompositionInclusionManuscript.pdf|||Sat Jan 15 00:44:03 UTC 2022
dc.source.uri 10.1093/jas/skz383
dc.subject.disciplines Agriculture
dc.subject.disciplines Animal Sciences
dc.subject.disciplines Poultry or Avian Science
dc.subject.keywords broiler
dc.subject.keywords gut integrity
dc.subject.keywords immune cell profile
dc.subject.keywords performance
dc.subject.keywords probiotic
dc.title Composition and inclusion of probiotics in broiler diets alter intestinal permeability and spleen immune cell profiles without negatively affecting performance
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 5cdcafbe-9e09-4a3d-9ef2-c3ab2d3cbb2b
relation.isAuthorOfPublication 1914e5d6-c767-494e-8228-448fa7aa5672
relation.isOrgUnitOfPublication 85ecce08-311a-441b-9c4d-ee2a3569506f
File
Original bundle
Now showing 1 - 1 of 1
Name:
2020_Bobeck_CompositionInclusionManuscript.pdf
Size:
966.19 KB
Format:
Adobe Portable Document Format
Description:
Collections