Numerical investigation of effect of buoyancy on the wake of a heated cylinder in contra flow

Thumbnail Image
Date
2007-01-01
Authors
Varma, Khyati
Major Professor
Advisor
Zhi J. Wang
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Flow over a cylinder is a classically and practically interesting problem. A number of studies focus on the vortex shedding and wake instability of an unheated cylinder. Inspite of its applications flow over a heated cylinder operating in a mixed convection region has received very little attention. The present study aims at the numerical investigation of unsteady heat transfer for a laminar flow past a circular cylinder with small aspect ratio (L/d=7) or finite spanwise length with no-slip wall conditions. A circular cylinder is exposed to approaching flow stream in the direction of gravity or opposing the direction of buoyant force (contra flow). The Reynolds number and the temperature of the incoming flow are set as Re=130 and 297 K respectively. The temperature of the heated cylinder is varied between 297 K to 358 K corresponding to Richardson number varying between Ri=0.0 and Ri=1.05. The analysis performed focuses on the effect of buoyancy on the wake instability in terms of vortex shedding frequency, drag forces, wake centerline velocities, averaged Nusselt number and transition phenomenon. In addition to this, preliminary study is conducted to understand the influence of small aspect ratio and end effects on the transition mechanism due to heating. Numerical results are compared to available experimental data and some new results are presented.

Comments
Description
Keywords
Citation
Source
Copyright
Mon Jan 01 00:00:00 UTC 2007