Micromagnetic modeling of the effects of stress on magnetic properties

Thumbnail Image
Date
2001-06-01
Authors
Zhu, B.
Lo, Chester
Lee, S. J.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jiles, David
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau–Lifshitz–Gilbert equation. Magnetization curves of a nickelfilm were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field.

Comments

The following article appeared in Journal of Applied Physics 89 (2001): 7009 and may be found at http://dx.doi.org/10.1063/1.1363604.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections