Charge density wave modulation in superconducting BaPbO3/BaBiO3 superlattices

Thumbnail Image
Date
2020-02-01
Authors
Harris, D. T.
Campbell, N. G.
Di, C.
Park, Joong Mok
Luo, Liang
Zhou, H.
Kim, G.-Y.
Song, K.
Choi, S.-Y.
Wang, Jigang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

The isotropic, nonmagnetic doped BaBiO3 superconductors maintain some similarities to high-Tc cuprates, while also providing a cleaner system for isolating charge density wave (CDW) physics that commonly competes with superconductivity. Artificial layered superlattices offer the possibility of engineering the interaction between superconductivity and CDW. Here we stabilize a low-temperature, fluctuating short-range CDW order by using artificially layered epitaxial (BaPbO3)3m/(BaBiO3)m (m=1–10 unit cells) superlattices that are not present in the optimally doped BaPb0.75Bi0.25O3 alloy with the same overall chemical formula. Charge transfer from BaBiO3 to BaPbO3 effectively dopes the former and suppresses the long-range CDW; however, as the short-range CDW fluctuations strengthen at low temperatures charge appears to localize and superconductivity is weakened. The monolayer structural control demonstrated here provides compelling implications to access controllable, local density wave orders absent in bulk alloys and manipulate phase competition in unconventional superconductors.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections